1887
Volume 23, Issue 3
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

As the highest part of the central Andean fold‐thrust belt, the Eastern Cordillera defines an orographic barrier dividing the Altiplano hinterland from the South American foreland. Although the Eastern Cordillera influences the climatic and geomorphic evolution of the central Andes, the interplay among tectonics, climate and erosion remains unclear. We investigate these relationships through analyses of the depositional systems, sediment provenance and 40Ar/39Ar geochronology of the upper Miocene Cangalli Formation exposed in the Tipuani‐Mapiri basin (15–16°S) along the boundary of the Eastern Cordillera and Interandean Zone in Bolivia. Results indicate that coarse‐grained nonmarine sediments accumulated in a wedge‐top basin upon a palaeotopographic surface deeply incised into deformed Palaeozoic rocks. Seven lithofacies and three lithofacies associations reflect deposition by high‐energy braided river systems, with stratigraphic relationships revealing significant (∼500 m) palaeorelief. Palaeocurrents and compositional provenance data link sediment accumulation to pronounced late Miocene erosion of the deepest levels of the Eastern Cordillera. 40Ar/39Ar ages of interbedded tuffs suggest that sedimentation along the Eastern Cordillera–Interandean Zone boundary was ongoing by 9.2 Ma and continued until at least ∼7.4 Ma. Limited deformation of subhorizontal basin fill, in comparison with folded and faulted rocks of the unconformably underlying Palaeozoic section, implies that the thrust front had advanced into the Subandean Zone by the 11–9 Ma onset of basin filling. Documented rapid exhumation of the Eastern Cordillera from ∼11 Ma onward was decoupled from upper‐crustal shortening and coeval with sedimentation in the Tipuani‐Mapiri basin, suggesting climate change (enhanced precipitation) or lower crustal and mantle processes (stacking of basement thrust sheets or removal of mantle lithosphere) as possible controls on late Cenozoic erosion and wedge‐top accumulation. Regardless of the precise trigger, we propose that an abruptly increased supply of wedge‐top sediment produced an additional sedimentary load that helped promote late Miocene advance of the central Andean thrust front in the Subandean Zone.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2010.00491.x
2010-10-21
2024-04-26
Loading full text...

Full text loading...

References

  1. Allmendinger, R.W., Jordan, T.E., Kay, S.M. & Isacks, B.L. (1997) The evolution of the Altiplano‐Puna plateau of the central Andes. Ann. Rev. Earth Planet. Sci., 25, 139–174.
    [Google Scholar]
  2. Baby, P., Rochat, P., Mascle, G. & Herail, G. (1997) Neogene shortening contribution to crustal thickening in the back arc of the Central Andes. Geology, 25, 883–886.
    [Google Scholar]
  3. Barke, R. & Lamb, S. (2006) Late Cenozoic uplift of the Eastern Cordillera, Bolivian Andes. Earth Planet. Sci. Lett., 249, 350–367.
    [Google Scholar]
  4. Barnes, J.B., Ehlers, T.A., McQuarrie, N., O'Sullivan, P.B. & Pelletier, J.D. (2006) Eocene to recent variations in erosion across the central Andean fold‐thrust belt, northern Bolivia: implications for plateau evolution. Earth Planet. Sci. Lett., 248, 118–133.
    [Google Scholar]
  5. Barnes, J.B., Ehlers, T.A., McQuarrie, N., O'Sullivan, P.B. & Tawackoli, S. (2008) Thermochronometer record of central Andean plateau growth, Bolivia (19.5 degrees S). Tectonics, 27, TC3003, doi: DOI: 10.1029/2007TC002174.
    [Google Scholar]
  6. Barnes, J.B. & Heins, J.D. (2009) Plio‐Quaternary sediment budget between thrust belt erosion and foreland deposition in the central Andes, southern Bolivia. Basin Res., 21, 91–109.
    [Google Scholar]
  7. Barnes, J.B. & Pelletier, J.D. (2006) Latitudinal variation of denudation in the evolution of the Bolivian Andes. Am. J. Sci., 306, 1–31.
    [Google Scholar]
  8. Beck, S.L. & Zandt, G. (2002) The nature of orogenic crust in the central Andes. J. Geophys. Res.-Solid Earth, 107 (B10), 2230, doi: DOI: 10.1029/2000JB000124.
    [Google Scholar]
  9. Benjamin, M.T., Johnson, N.M. & Naeser, C.W. (1987) Recent rapid uplift in the Bolivian Andes: evidence from fission-track dating. Geology, 15, 680–683.
    [Google Scholar]
  10. Blair, T.C. & McPherson, J.G. (1992) The Trollheim alluvial‐fan and facies model revisited. Geol. Soc. Am. Bull., 104, 762–769.
    [Google Scholar]
  11. Blair, T.C. & McPherson, J.G. (1994) Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages. J. Sediment. Res. Sec. A-Sediment. Petrol. Proc., 64, 450–489.
    [Google Scholar]
  12. DeCelles, P.G. & Giles, K.A. (1996) Foreland basin systems. Basin Res., 8, 105–123.
    [Google Scholar]
  13. DeCelles, P.G. & Horton, B.K. (2003) Early to middle Tertiary foreland basin development and the history of Andean crustal shortening in Bolivia. Geol. Soc. Am. Bull., 115, 58–77.
    [Google Scholar]
  14. Dorbath, C., Granet, M., Poupinet, G. & Martinez, C. (1993) A teleseismic study of the Altiplano and the Eastern Cordillera in northern Bolivia: new constraints on a lithospheric model. J. Geophys. Res.‐Solid Earth, 98, 9825–9844.
    [Google Scholar]
  15. Dorbath, C., Paul, A., Achauer, U., Aldunate, M., Bianchi, T., Caminade, J.P., Farra, V., Fontanilla, R., Fornari, M., Guiget, R., Guilbert, J., Guillier, J., Herquel, G., Lambert, M., Martinez, C., Masson, F., Monfret, T., Pequegnat, C., Soler, P. & Wittlinger, G. (1996) Tomography of the Andean crust and mantle at 20 degrees S: first results of the lithoscope experiment. Phys. Earth Planet. Interiors, 97, 133–144.
    [Google Scholar]
  16. Ege, H., Sobel, E.R., Scheuber, E. & Jacobshagen, V. (2007) Exhumation history of the southern Altiplano plateau (southern Bolivia) constrained by apatite fission track thermochronology. Tectonics, 26, TC1004, doi: DOI: 10.1029/2005TC001869.
    [Google Scholar]
  17. Ehlers, T.A. & Poulsen, C.J. (2009) Influence of Andean uplift on climate and paleoaltimetry estimates. Earth Planet. Sci. Lett., 281, 238–248.
    [Google Scholar]
  18. Elger, K., Oncken, O. & Glodny, J. (2005) Plateau‐style accumulation of deformation: southern Altiplano. Tectonics, 24, TC4020, doi: DOI: 10.1029/2004TC001675.
    [Google Scholar]
  19. Farrar, E., Clark, A.H., Kontak, D.J. & Archibald, D.A. (1988) Zongo‐San Gaban Zone: eocene foreland boundary of the central Andean orogen, northwest Bolivia and southeast Peru. Geology, 16, 55–58.
    [Google Scholar]
  20. Fornari, M., Herail, G., Viscara, G., Laubacher, G. & Argollo, J. (1987) Sedimentation and structure of the Tipuani‐Mapiri basin: a testimony to the Amazonian front evolution in the Andes of Bolivia. C. R. Acad. Sci. Ser. II, 305, 1303–1308.
    [Google Scholar]
  21. Garzione, C.N., Hoke, G.D., Libarkin, J.C., Withers, S., MacFadden, B., Eiler, J., Ghosh, P. & Mulch, A. (2008) Rise of the Andes. Science, 320, 1304–1307.
    [Google Scholar]
  22. Garzione, C.N., Molnar, P., Libarkin, J.C. & MacFadden, B.J. (2006) Rapid late Miocene rise of the Bolivian Altiplano: evidence for removal of mantle lithosphere. Earth Planet. Sci. Lett., 241, 543–556.
    [Google Scholar]
  23. Gillis, R.J., Horton, B.K. & Grove, M. (2006) Thermochronology, geochronology, and upper crustal structure of the Cordillera Real: implications for Cenozoic exhumation of the central Andean plateau. Tectonics, 25, TC6007, doi: DOI: 10.1029/2005TC001887.
    [Google Scholar]
  24. Gubbels, T.L., Isacks, B.L. & Farrar, E. (1993) High‐level surfaces, plateau uplift, and foreland development, Bolivian Central Andes. Geology, 21, 695–698.
    [Google Scholar]
  25. Herail, G., Fornari, M., Viscara, G., Laubacher, G., Argollo, J. & Miranda, V. (1989) Geodynamic and gold distribution in the Tipuani‐Mapiri basin (Bolivia). International Symposium on Intermontane Basins: Geology & Resources, Chiang Mai, Thailand.
  26. Herail, G., Sharp, W., Giovani, V. & Fornari, M. (1994) La edad de la Formacion Cangalli: Nuevos datos geocronologicos y su significado geologico. Memorias del XI Congresso Geologico de Bolivia, Santa Cruz, Bolivia.
  27. Horton, B.K. (1998) Sediment accumulation on top of the Andean orogenic wedge: oligocene to late Miocene basins of the Eastern Cordillera, southern Bolivia. Geol. Soc. Am. Bull., 110, 1174–1195.
    [Google Scholar]
  28. Horton, B.K. (1999) Erosional control on the geometry and kinematics of thrust belt development in the central Andes. Tectonics, 18, 1292–1304.
    [Google Scholar]
  29. Horton, B.K. (2005) Revised deformation history of the central Andes: inferences from Cenozoic foredeep and intermontane basins of the Eastern Cordillera, Bolivia. Tectonics, 24, TC3011, doi: DOI: 10.1029/2003TC001619.
    [Google Scholar]
  30. Horton, B.K. & DeCelles, P.G. (1997) The modern foreland basin system adjacent to the central Andes. Geology, 25, 895–898.
    [Google Scholar]
  31. Horton, B.K. & DeCelles, P.G. (2001) Modern and ancient fluvial megafans in the foreland basin system of the central Andes, southern Bolivia: implications for drainage network evolution in fold-thrust belts. Basin Res., 13, 43–63.
    [Google Scholar]
  32. Horton, B.K., Hampton, B.A., LaReau, B.N. & Baldellon, E. (2002) Tertiary provenance history of the northern and central Altiplano (central Andes, Bolivia): a detrital record of plateau-margin tectonics. J. Sedimen. Res., 72, 711–726.
    [Google Scholar]
  33. Horton, B.K., Hampton, B.A. & Waanders, G.L. (2001) Paleogene synorogenic sedimentation in the Altiplano plateau and implications for initial mountain building in the central Andes. Geol. Soc. Am. Bull., 113, 1387–1400.
    [Google Scholar]
  34. Isacks, B.L. (1988) Uplift of the central Andean plateau and bending of the Bolivian orocline. J. Geophys. Res.-Solid Earth Planets, 93, 3211–3231.
    [Google Scholar]
  35. Jones, S.J., Frostick, L.E. & Astin, T.R. (2001) Braided stream and flood plain architecture: the Rio Vero Formation, Spanish Pyrenees. Sediment. Geol., 139, 229–260.
    [Google Scholar]
  36. Kley, J. (1996) Transition from basement‐involved to thin‐skinned thrusting in the Cordillera Oriental of southern Bolivia. Tectonics, 15, 763–775.
    [Google Scholar]
  37. Kley, J. & Monaldi, C.R. (1998) Tectonic shortening and crustal thickness in the central Andes: how good is the correlation? Geology, 26, 723–726.
    [Google Scholar]
  38. Lamb, S. & Hoke, L. (1997) Origin of the high plateau in the central Andes, Bolivia, South America. Tectonics, 16, 623–649.
    [Google Scholar]
  39. Leier, A.L., McQuarrie, N., Horton, B.K. & Gehrels, G.E. (2010) Upper Oligocene conglomerates of the Altiplano, central Andes: the record of deposition and deformation along the margin of a hinterland basin. J. Sediment. Res., 80, 750–762.
    [Google Scholar]
  40. Leturmy, P., Mugnier, J.L., Vinour, P., Baby, P., Colletta, B. & Chabron, E. (2000) Piggyback basin development above a thin‐skinned thrust belt with two detachment levels as a function of interactions between tectonic and superficial mass transfer: the case of the Subandean Zone (Bolivia). Tectonophysics, 320, 45–67.
    [Google Scholar]
  41. Limarino, C., Tripaldi, A., Marenssi, S., Net, L., Re, G. & Caselli, A. (2001) Tectonic control on the evolution of the fluvial systems of the Vinchina Formation (Miocene), northwestern Argentina. J. S. Am. Earth Sci., 14, 751–762.
    [Google Scholar]
  42. Mack, G.H., Leeder, M., Perez‐Arlucea, M. & Bailey, B.D.J. (2003) Early Permian silt‐bed fluvial sedimentation in the Orogrande basin of the Ancestral Rocky Mountains, New Mexico, USA. Sediment. Geol., 160, 159–178.
    [Google Scholar]
  43. Martinez, C. (1980) Structure et évolution de la chaîne hercynienne et da la chaîne andine dans le nord de la Cordillère des Andes de Bolivie. Travaux et Documents de l'ORSTOM (Office de la Recherche Scientifique et Technique Outre-Mer), 119, 352 pp.
    [Google Scholar]
  44. Masek, J.G., Isacks, B.L., Gubbels, T.L. & Fielding, E.J. (1994) Erosion and tectonics at the margins of continental plateaus. J. Geophys. Res.-Solid Earth, 99, 13941–13956.
    [Google Scholar]
  45. McBride, S.L., Robertson, R.C.R., Clark, A.H. & Farrar, E. (1983) Magmatic and metallogenetic episodes in the northern tin belt, Cordillera‐Real, Bolivia. Geol. Rundsch., 72, 685–713.
    [Google Scholar]
  46. McQuarrie, N. (2002) The kinematic history of the central Andean fold‐thrust belt, Bolivia: implications for building a high plateau. Geol. Soc. Am. Bull., 114, 950–963.
    [Google Scholar]
  47. McQuarrie, N., Barnes, J.B. & Ehlers, T.A. (2008a) Geometric, kinematic, and erosional history of the central Andean plateau, Bolivia (15–17 degrees S). Tectonics, 27, TC3007, doi: DOI: 10.1029/2006TC002054.
    [Google Scholar]
  48. McQuarrie, N. & Davis, G.H. (2002) Crossing the several scales of strain‐accomplishing mechanisms in the hinterland of the central Andean fold‐thrust belt, Bolivia. J. Struct. Geol., 24, 1587–1602.
    [Google Scholar]
  49. McQuarrie, N. & DeCelles, P. (2001) Geometry and structural evolution of the central Andean backthrust belt, Bolivia. Tectonics, 20, 669–692.
    [Google Scholar]
  50. McQuarrie, N., Ehlers, T.A., Barnes, J.B. & Meade, B. (2008b) Temporal variation in climate and tectonic coupling in the central Andes. Geology, 36, 999–1002.
    [Google Scholar]
  51. McQuarrie, N., Horton, B.K., Zandt, G., Beck, S. & DeCelles, P.G. (2005) Lithospheric evolution of the Andean fold‐thrust belt, Bolivia, and the origin of the central Andean plateau. Tectonophysics, 399, 15–37.
    [Google Scholar]
  52. Miall, A.D. (1977) Review of braided‐river depositional environment. Earth-Sci. Rev., 13, 1–62.
    [Google Scholar]
  53. Miall, A.D. (1985) Architectural‐element analysis: a new method of facies analysis applied to fluvial deposits. Earth‐Sci. Rev., 22, 261–308.
    [Google Scholar]
  54. Miall, A.D. (1996) The Geology of Fluvial Deposits. Springer, New York.
    [Google Scholar]
  55. Montgomery, D.R., Balco, G. & Willett, S.D. (2001) Climate, tectonics, and the morphology of the Andes. Geology, 29, 579–582.
    [Google Scholar]
  56. Mulch, A., Uba, C.E., Strecker, M.R., Schoenberg, R. & Chamberlain, C.P. (2010) Late Miocene climate variability and surface elevation in the central Andes. Earth Planet. Sci. Lett., 290, 173–182.
    [Google Scholar]
  57. Muller, J.P., Kley, J. & Jacobshagen, V. (2002) Structure and Cenozoic kinematics of the Eastern Cordillera, southern Bolivia (21 degrees S). Tectonics, 21, 1037, doi: DOI: 10.1029/2001TC001340.
    [Google Scholar]
  58. Murray, B.P., Horton, B.K., Matos, R. & Heizler, M.T. (2010) Oligocene–Miocene basin evolution in the northern Altiplano, Bolivia: implications for evolution of the central Andean backthrust belt and high plateau. Geol. Soc. Am. Bull., 122, 1443–1462.
    [Google Scholar]
  59. Myers, S.C., Beck, S., Zandt, G. & Wallace, T. (1998) Lithospheric‐scale structure across the Bolivian Andes from tomographic images of velocity and attenuation for P and S waves. J. Geophys. Res.-Solid Earth, 103, 21233–21252.
    [Google Scholar]
  60. Nichols, G.J. & Fisher, J.A. (2007) Processes, facies and architecture of fluvial distributary system deposits. Sediment. Geol., 195, 75–90.
    [Google Scholar]
  61. Roeder, D. (1988) Andean‐age structure of the Eastern Cordillera (Province of La‐Paz, Bolivia). Tectonics, 7, 23–39.
    [Google Scholar]
  62. Schmitz, M. (1994) A balanced model of the southern central Andes. Tectonics, 13, 484–492.
    [Google Scholar]
  63. Sempere, T., Herail, G., Oller, J. & Bonhomme, M.G. (1990) Late Oligocene–early Miocene major tectonic crisis and related basins in Bolivia. Geology, 18, 946–949.
    [Google Scholar]
  64. Servicio Geologico de Bolivia (Geobol).
    Servicio Geologico de Bolivia (Geobol). (1994) Carta Geologica de Bolivia, Chulumani (Hoja 6044), scale 1:100000, La Paz.
  65. Servicio Geologico de Bolivia (Geobol).
    Servicio Geologico de Bolivia (Geobol). (1995) Carta Geologica de Bolivia, Milluni (Hoja 5945), scale 1:100000, La Paz.
  66. Servicio Nacional de Geologia y Mineria.
    Servicio Nacional de Geologia y Mineria. (1990) Mapa geologico de Bolivia. 1:1,000,000 scale, La Paz.
  67. Sheffels, B.M. (1990) Lower bound on the amount of crustal shortening in the central Bolivian Andes. Geology, 18, 812–815.
    [Google Scholar]
  68. Sobel, E.R., Hilley, G.E. & Strecker, M.R. (2003) Formation of internally drained contractional basins by aridity‐limited bedrock incision. J. Geophys. Res.-Solid Earth, 108 (B7), 2344, doi: DOI: 10.1029/2002JB001883.
    [Google Scholar]
  69. Strub, M., Herail, G., Darrozes, J., Garcia‐Duarte, R. & Astorga, G. (2005) Neogene to present tectonic and orographic evolution of the Beni Subandean Zone. 6th International Symposium on Andean Geodynamics, ISAG. Barcelona. Extended Abstracts, 709–713.
  70. Uba, C.E., Heubeck, C. & Hulka, C. (2005) Facies analysis and basin architecture of the Neogene Subandean synorogenic wedge, southern Bolivia. Sediment. Geol., 180, 91–123.
    [Google Scholar]
  71. Uba, C.E., Kley, J., Strecker, M.R. & Schmitt, A.K. (2009) Unsteady evolution of the Bolivian Subandean thrust belt: the role of enhanced erosion and clastic wedge progradation. Earth Planet. Sci. Lett., 281, 134–146.
    [Google Scholar]
  72. Uba, C.E., Strecker, M.R. & Schmitt, A.K. (2007) Increased sediment accumulation rates and climatic forcing in the central Andes during the late Miocene. Geology, 35, 979–982.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2010.00491.x
Loading
/content/journals/10.1111/j.1365-2117.2010.00491.x
Loading

Data & Media loading...

Supplements

Ar/Ar analytical data.Please note: Wiley‐Blackwell is not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.

Supporting info item

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error