1887
Volume 23, Issue 6
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

The Quaternary to late Pliocene sedimentary succession along the margin of the South Caspian Basin contains numerous kilometre‐scale submarine slope failures, which were sourced along the basin slope and from the inclined flanks of contemporaneous anticlines. This study uses three‐dimensional (3D) seismic reflection data to visualise the internal structure of 27 mass transport deposits and catalogues the syndepositional structures contained within them. These are used to interpret emplacement processes occurring during submarine slope failure. The deposits consist of three linked structural domains: extensional, translational and compressive, each containing characteristic structures. Novel features are present within the mass transport deposits: (1) a diverging retrogression of the headwall scarp; (2) the absence of a conventional headwall scarp around growth stratal pinch outs; (3) restraining bends in the lateral margin; (4) a downslope increase in the throw of thrust faults. The results of this study shed light on the deformation that occurred during submarine slope failure, and highlight an important geological process in the evolution of the South Caspian Basin margin.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2011.00508.x
2011-06-22
2024-04-26
Loading full text...

Full text loading...

References

  1. Abdullayev, N.R. (2000) Seismic stratigraphy of the upper pliocene and quaternary deposits in the South Caspian Basin. J. Petrol. Sci. Eng., 28, 207–226.
    [Google Scholar]
  2. Abreu, V. & Nummedal, D. (2007) Miocene to quaternary sequence stratigraphy of the South and Central Caspian Basins. In: Oil and Gas of the Greater Caspian Area (Ed. by P.Yilmaz & G.Isaksen , Stud. Geol., 55, 65–86.
    [Google Scholar]
  3. Allen, M., Jackson, J. & Walker, R. (2004) Late Cenozoic reorganization of the Arabia–Eurasia collision and the comparison of short‐term and long‐term deformation rates. Tectonics, 23, TC2008, doi: DOI: 10.1029/2003TC001530.
    [Google Scholar]
  4. Allen, M.B., Jones, S., Ismail‐Zadeh, A., Simmons, M. & Anderson, L. (2002) Onset of subduction as the cause of rapid Pliocene‐quaternary subsidence in the South Caspian Basin. Geology, 30, 775–778.
    [Google Scholar]
  5. Allen, M.B., Vincent, S.J., Alsop, G.I., Ismail‐zadeh, A. & Flecker, R. (2003) Late Cenozoic deformation in the South Caspian region: effects of a rigid basement block within a collision zone. Tectonophysics, 366, 223–239.
    [Google Scholar]
  6. Amos, C., Knapp, C. & Knapp, J. (2008) Seafloor Deformation in the South Caspian Sea: A Potential Proxy for Gas Hydrate Dissociation and Climate Change. AGU Fall meeting. San Francisco, OS33A‐1327.
  7. Ballato, P., Nowaczyk, N., Landgraf, A., Strecker, M., Friedrich, A. & Tabatabaei, S. (2008) Tectonic control on sedimentary facies pattern and sediment accumulation rates in the Miocene Foreland basin of the Southern Alborz Mountains, Northern Iran. Tectonics, 27, TC6001, doi: DOI: 10.1029/2008TC002278.
    [Google Scholar]
  8. Barley, B. (1999) Deepwater problems around the world. Leading Edge, 18, 488–494.
    [Google Scholar]
  9. Brown, A. (2004) Depth conversion and depth imaging. In: Interpretation of Three‐Dimensional Seismic Data, AAPG Memoir/SEG Investigations into Geophysics, Vol. 42/9, pp. 433–476. Society of Exploration Geophysicists, Tulsa, OK.
    [Google Scholar]
  10. Bull, S., Cartwright, J. & Huuse, M. (2009) A review of kinematic indicators from mass‐transport complexes using 3D seismic data. Mar. Petrol. Geol., 26, 1132–1151.
    [Google Scholar]
  11. Butler, R.W.H. & McCaffrey, W.D. (2010) Structural Evolution and Sediment Entrainment in Mass‐Transport Complexes: Outcrop Studies from Italy. Journal of the Geological Society, 167, 617–631.
    [Google Scholar]
  12. Butler, R.W.H. & Turner, J.P. (2010) Gravitational Collapse at Continental Margins: Products and Processes; an Introduction. Journal of the Geological Society, 167, 569–570.
    [Google Scholar]
  13. Carter, R. (1975) A discussion and classification of subaqueous mass‐transport with particular application to grain‐flow, slurry‐flow, and fluxoturbidites. Earth Sci. Rev., 11, 145–147.
    [Google Scholar]
  14. Davies, R.J. & Clark, I.R. (2006) Submarine slope failure primed and triggered by silica and its diagenesis. Basin Res., 18, 339–350.
    [Google Scholar]
  15. Davis, D., Suppe, J. & Dahlen, F. (1983) Mechanics of Fold‐and‐Thrust Belts and Accretionary Wedges. Journal of Geophysical Research, 88, 1153–1172.
    [Google Scholar]
  16. Devlin, W.J., Cogswell, J.M., Gaskins, G.M., Isaksen, G.H., Pitcher, D.M., Puls, D.P., Stanley, K.O. & Wall, G.R.T. (1999) South Caspian basin: young, cool, and full of promise. GSA Today, 9, 1–9.
    [Google Scholar]
  17. Diaconescu, C.C., Kieckhefer, R.M. & Knapp, J.H. (2001) Geophysical evidence for gas hydrates in the deep water of the South Caspian Basin, Azerbaijan. Mar. Petrol. Geol., 18, 209–221.
    [Google Scholar]
  18. Diaconescu, C.C. & Knapp, J.H. (2000) Buried gas hydrates in the deepwater of the South Caspian Sea, Azerbaijan: implications for geo-hazards. Energy Explor. Exploit., 18, 385–400.
    [Google Scholar]
  19. Diaconescu, C.C. (2002) Gas Hydrates of the South Caspian Sea, Azerbaijan: Drilling Hazards and Sea Floor Destabilizers. Offshore Technology Conference, Houston, Texas.
    [Google Scholar]
  20. Dugan, B. & Stigall, J. (2010) Origin of overpressure and slope failure in the Ursa Region, Northern Gulf of Mexico. In: Submarine Mass Movements and Their Consequences (Ed. by D.C.Mosher , L.Moscardelli , C.D.P.Baxter , R.Urgeles , R.C.Shipp , J.D.Chaytor & H.J.Lee ), pp. 167–178. Springer, Berlin.
    [Google Scholar]
  21. Farrell, S. (1984) A Dislocation Model Applied to Slump Structures, Ainsa Basin, South Central Pyrenees. J. Struct. Geol., 6, 727–736.
    [Google Scholar]
  22. Field, M., Gardner, J. & Prior, D. (1999) Geometry and significance of stacked gullies on the Northern California slope. Marine Geol., 154, 271–286.
    [Google Scholar]
  23. Fowler, S.R., Mildenhall, J., Zalova, S., Riley, G., Elsley, G., Desplanques, A. & Guliyev, F. (2000) Mud volcanoes and structural development on Shah Deniz. J. Petrol. Sci. Eng., 28, 189–206.
    [Google Scholar]
  24. Frey‐Martínez, J., Cartwright, J. & James, D. (2006) Frontally confined versus frontally emergent submarine landslides: a 3D seismic characterisation. Mar. Petrol. Geol., 23, 585–604.
    [Google Scholar]
  25. Frey‐Martinez, J. & Cartwright, J.H. (2005) 3D seismic interpretation of slump complexes: examples from the continental margin of Israel. Basin Res., 17, 83–108.
    [Google Scholar]
  26. Gafeira, J., Long, D., Scrutton, R. & Evans, D. (2010) 3D seismic evidence of internal structure within Tampen Slide deposits on the North Sea Fan: are chaotic deposits that chaotic? J. Geol. Soc., 167, 605–616.
    [Google Scholar]
  27. Gamberi, F., Rovere, M. & Marani, M. (2011) Mass‐transport complex evolution in a tectonically active margin (Gioia Basin, Southeastern Tyrrhenian Sea). Mar. Geol., 279, 98–110.
    [Google Scholar]
  28. Gardner, J., Prior, D. & Field, M. (1999) Humboldt slide – a large shear‐dominated retrogressive slope failure. Mar. Geol., 154, 323–338.
    [Google Scholar]
  29. Gee, M.J.R., Masson, D.G., Watts, A.B. & Allen, P.A. (1999) The Saharan Debris Flow: An Insight into the Mechanics of Long Runout Submarine Debris Flows. Sedimentology, 46, 317–335.
    [Google Scholar]
  30. Gee, M.J.R., Masson, D.G., Watts, A.B. & Mitchell, N.C. (2001) Passage of Debris Flows and Turbidity Currents through a Topographic Constriction: Seafloor Erosion and Deflection of Flow Pathways. Sedimentology, 48, 1389–1409.
    [Google Scholar]
  31. Gee, M.J.R., Gawthorpe, R.L. & Friedmann, J.S. (2005) Giant striations at the base of a submarine landslide. Mar. Geol., 214, 287–294.
    [Google Scholar]
  32. Guest, B., Horton, B., Axen, G., Hassanzadeh, J. & McIntosh, W. (2007) Middle to late Cenozoic basin evolution in the Western Alborz mountains: implications for the onset of collisional deformation in Northern Iran. Tectonics, 26, TC6011, doi: DOI: 10.1029/2006TC002091.
    [Google Scholar]
  33. Hampton, M., Lee, H. & Locat, J. (1996) Submarine landslides. Rev. Geophys., 34, 33–59.
    [Google Scholar]
  34. Heinio, P. & Davies, R.J. (2006) Degradation of Compressional Fold Belts: Deep‐Water Niger Delta. AAPG Bulletin, 90, 753–770.
    [Google Scholar]
  35. Hjelstuen, B.O., Eldholm, O. & Faleide, J.I. (2007) Recurrent Pleistocene mega‐failures on the SW Barents Sea margin. Earth Planet. Sci. Lett., 258, 605–618.
    [Google Scholar]
  36. Howie, J.M., Robinson, N., Riviere, M., Lyon, T. & Manley, D. (2005) Developing the long‐term seismic strategy for Azeri‐Chirag‐Gunashli, South Caspian Sea, Azerbaijan. Leading Edge, 24, 934–939.
    [Google Scholar]
  37. Huvenne, V., Croker, P. & Henriet, J. (2002) A refreshing 3D view of an ancient sediment collapse and slope failure. Terra Nova, 14, 33–40.
    [Google Scholar]
  38. Ilstad, T., Marr, J., Elverhi, A. & Harbitz, C. (2004) Laboratory studies of subaqueous debris flows by measurements of pore‐fluid pressure and total stress. Mar. Geol., 213, 403–414.
    [Google Scholar]
  39. Jackson, J., Priestley, K., Allen, M. & Berberian, M. (2002) Active tectonics of the South Caspian Basin. Geophys. J. Int., 148, 214–245.
    [Google Scholar]
  40. Jones, R.W. & Simmons, M.D. (1996) A review of the stratigraphy of Eastern Paratethys (Oligocene–Holocene). Bull. Nat. History Mus. (Geol. Suppl.), 52, 25–49.
    [Google Scholar]
  41. Katz, B., Richards, D., Long, D. & Lawrence, W. (2000) A new look at the components of the petroleum system of the South Caspian Basin. J. Petrol. Sci. Eng., 28, 161–182.
    [Google Scholar]
  42. Knapp, C.C., Knapp, J.H. & Connor, J.A. (2004) Crustal‐scale structure of the South Caspian Basin revealed by deep seismic reflection profiling. Mar. Petrol. Geol., 21, 1073–1081.
    [Google Scholar]
  43. Koyi, H.A. & Vendeville, B.C. (2003) The effect of décollement dip on geometry and kinematics of model accretionary wedges. J. Struct. Geol., 25, 1445–1450.
    [Google Scholar]
  44. Kroonenberg, S.B., Rusakov, G.V. & Svitoch, A.A. (1997) The wandering of the Volga delta: a response to rapid Caspian sea-level change. Sediment. Geol., 107, 189–209.
    [Google Scholar]
  45. Lewis, K. (1971) Slumping on a continental slope inclined at 1°–4°. Sedimentology, 16, 97–110.
    [Google Scholar]
  46. Lickorish, W.H., Ford, M., Bürgisser, J. & Cobbold, P.R. (2002) Arcuate thrust systems in sandbox experiments: a comparison to the external arcs of the Western Alps. Geol. Soc. Am. Bull., 114, 1089–1107.
    [Google Scholar]
  47. Lisle, R.J. (1999) Predicting patterns of strain from three‐dimensional fold geometries: neutral surface folds and forced folds. Geol. Soc. London, Spec. Publ., 169, 213–221.
    [Google Scholar]
  48. Liu, X. & Goulty, N.R. (1999) Comparison of 2D filters for suppressing noise in common shot gathers. First Break, 17, 105–110.
    [Google Scholar]
  49. Locat, J. & Lee, H. (2002) Submarine landslides: advances and challenges. Can. Geotech. J., 39, 193–212.
    [Google Scholar]
  50. Lucente, C.C. & Pini, G.A. (2003) Anatomy and emplacement mechanism of a large submarine slide within a Miocene Foredeep in the Northern Apennines, Italy: a field perspective. Am. J. Sci., 303, 565–602.
    [Google Scholar]
  51. Macedo, J. & Marshak, S. (1999) Controls on the geometry of fold‐thrust belt salients. Geol. Soc. Am. Bull., 111, 1808–1822.
    [Google Scholar]
  52. Marques, F.O. & Cobbold, P.R. (2002) Topography as a major factor in the development of arcuate thrust belts: insights from sandbox experiments. Tectonophysics, 348, 247–268.
    [Google Scholar]
  53. Martinsen, O. (1994) Mass movements. In: The Geological Deformation of Sediments (Ed. by A.Maltman ), pp. 127–165. Chapman & Hall, London.
    [Google Scholar]
  54. Martinsen, O. & Bakken, B. (1990) Extensional and compressional zones in slumps and slides in the Namurian of county Clare, Ireland. J. Geol. Soc., 147, 153–164.
    [Google Scholar]
  55. Maslin, M., Owen, M., Day, S. & Long, D. (2004) Linking continental‐slope failures and climate change: testing the clathrate gun hypothesis. Geology, 32, 53–56.
    [Google Scholar]
  56. Masson, D.G., Huggett, Q.J. & Brunsden, D. (1993) The surface texture of Saharan debris flow deposit and some speculations on submarine debris flow processes. Sedimentology, 40, 583–598.
    [Google Scholar]
  57. Mazzanti, P. & Blasio, F. (2010) Peculiar morphologies of subaqueous landslide deposits and their relationship to flow dynamics. In: Submarine Mass Movements and Their Consequences (Ed. by D.C.Mosher , L.Moscardelli , C.D.P.Baxter , R.Urgeles , R.C.Shipp , J.D.Chaytor & H.J.Lee ), pp. 141–151. Springer, Berlin.
    [Google Scholar]
  58. McHugh, C.M.G., Damuth, J.E. & Mountain, G.S. (2002) Cenozoic mass‐transport facies and their correlation with relative sea‐level change, New Jersey continental margin. Mar. Geol., 184, 295–334.
    [Google Scholar]
  59. Mohrig, D., Whipple, K.X., Hondzo, M., Ellis, C. & Parker, G. (1998) Hydroplaning of subaqueous debris flows. Geol. Soc. Am. Bull., 110, 387–394.
    [Google Scholar]
  60. Moscardelli, L. & Wood, L. (2008) New classification system for mass transport complexes in offshore Trinidad. Basin Res., 20, 73–98.
    [Google Scholar]
  61. Moscardelli, L., Wood, L. & Mann, P. (2006) Mass‐transport complexes and associated processes in the offshore area of Trinidad and Venezuela. AAPG Bull., 90, 1059–1088.
    [Google Scholar]
  62. Mosher, D.C., Moscardelli, L., Baxter, C.D.P., Urgeles, R., Shipp, R.C., Chaytor, J.D. & Lee, H.J. (2010) Introduction to submarine mass movements and their consequences. In: Submarine Mass Movements and Their Consequences (Ed. by D.C.Mosher , L.Moscardelli , C.D.P.Baxter , R.Urgeles , R.C.Shipp , J.D.Chaytor & H.J.Lee , Adv. Nat. Tech. Hazards Res., 28, 1–8.
    [Google Scholar]
  63. Mulder, T. & Cochonat, P. (1996) Classification of offshore mass movements. J. Sediment. Res., 66, 43–57.
    [Google Scholar]
  64. Nadirov, R., Bagirov, E., Tagiyev, M. & Lerche, I. (1997) Flexural plate subsidence, sedimentation rates, and structural development of the super‐deep South Caspian Basin. Mar. Petrol. Geol., 14, 383–400.
    [Google Scholar]
  65. Nemec, W. (1990) Aspects of sediment movement on steep delta slopes. Coarse-Grained Deltas, 10, 29–73.
    [Google Scholar]
  66. Posamentier, H.W. & Kolla, V. (2003) Seismic geomorphology and stratigraphy of depositional elements in deep‐water settings. J. Sediment. Res., 73, 367–388.
    [Google Scholar]
  67. Posamentier, H.W. & Vail, P.R. (1988) Eustatic Controls on Clastic Deposition ‐ Sequence and Systems Tracts Models. In: Sea‐Level Changes: An Integrated Approach (Ed. by C.K.Wilgus , B.S.Hastings , H.W.Posamentier , J.C.Van Wagoner , C.A.Ross & C.G.S.C.Kendall ). 42, 125–154. SEPM, Special Publication.
    [Google Scholar]
  68. Prior, D., Bornhold, B., Coleman, J. & Bryant, W. (1982) Morphology of a submarine slide, Kitimat Arm, British Columbia. Geology, 10, 588–592.
    [Google Scholar]
  69. Prior, D.B., Bornhold, B.D. & Johns, M.W. (1984) Depositional characteristics of a submarine debris flow. J. Geol., 92, 707–727.
    [Google Scholar]
  70. Ratzov, G., Sosson, M., Collot, J., Migeon, S., Michaud, F., Lopez, E. & Gonidec, Y. (2007) Submarine landslides along the North Ecuador–South Colombia convergent margin: possible tectonic control. In: Submarine Mass Movements and Their Consequences (Ed. by V.Lykousis , D.Sakellariou & J.Locat , Adv. Nat. Tech. Hazards Res., 27, 47–55.
    [Google Scholar]
  71. Sawyer, D.E., Flemings, P.B., Dugan, B. & Germaine, J.T. (2009) Retrogressive failures recorded in mass transport deposits in the Ursa Basin, Northern Gulf of Mexico. J. Geophys. Res., 114, B10102, doi: DOI: 10.1029/2008JB006159.
    [Google Scholar]
  72. Schnellmann, M., Anselmetti, F., Giardini, D. & McKenzie, J. (2005) Mass movement‐induced fold‐and‐thrust belt structures in unconsolidated sediments in Lake Lucerne (Switzerland). Sedimentology, 52, 271–289.
    [Google Scholar]
  73. Stewart, S.A. & Davies, R.J. (2006) Structure and emplacement of mud volcano systems in the South Caspian basin. AAPG Bull., 90, 771–786.
    [Google Scholar]
  74. Sylvester, A. (1988) Strike‐slip faults. Geol. Soc. Am. Bull., 100, 1666–1703.
    [Google Scholar]
  75. Talling, P., Wynn, R., Masson, D., Frenz, M., Cronin, B., Schiebel, R., Akhmetzhanov, A., Dallmeier‐Tiessen, S., Benetti, S. & Weaver, P. (2007) Onset of submarine debris flow deposition far from original giant landslide. Nature, 450, 541–544.
    [Google Scholar]
  76. Twiss, R. & Moores, E. (1992) Structural environments of thrust faults. In: Structural Geology, pp. 100–106. WH Freeman & Co., San Francisco.
    [Google Scholar]
  77. Urgeles, R., Locat, J., Sawyer, D., Flemings, P., Dugan, B. & Binh, N. (2010) History of pore pressure build up and slope instability in mud‐dominated sediments of Ursa Basin, Gulf of Mexico continental slope. In: Submarine Mass Movements and their Consequences (Ed. by D.C.Mosher , L.Moscardelli , C.D.P.Baxter , R.Urgeles , R.C.Shipp , J.D.Chaytor & H.J.Lee ), pp. 179–190. Springer, Berlin.
    [Google Scholar]
  78. Varnes, D. (1978) Slope movement types and processes. In: Landslides: An Analysis and Control. Special Report 176 (Ed. by R.Schuster & R.Krizek ), pp. 11–33. Transportation Research Board, National Research Council, National Academy of Sciences, Washington, DC.
    [Google Scholar]
  79. Vincent, S., Allen, M., Ismail‐Zadeh, A., Flecker, R., Foland, K. & Simmons, M. (2005) Insights from the Talysh of Azerbaijan into the Paleogene evolution of the South Caspian region. Bull. Geol. Soc. America, 117, 1513–1533.
    [Google Scholar]
  80. Weimer, P. & Shipp, C. (2004) Mass Transport Complex: Musing on Past Uses and Suggestions for Future Directions. Offshore Technology Conference, Houston, TX.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2011.00508.x
Loading
/content/journals/10.1111/j.1365-2117.2011.00508.x
Loading

Data & Media loading...

Supplements

(a) Individual mass transport deposits within a mass transport complex. Amplitude extraction map. Lateral shear zones and deposit frontal lobes are highlighted in dotted white, interpreted material transport directions are shown with white arrows. Amplitude extraction taken from mass transport deposit 6 on Shah Deniz, 30 m above the mass transport deposit basal shear surface, with an extraction window of 25 m. (b) Erosional shadow remnant. Root mean square (RMS) amplitude extraction. The mass transport deposit contains an elongated tail of high amplitude material downslope of a mud volcano edifice located upon the basal shear surface. The amplitude extraction is taken through mass transport deposit 6 on Shah Deniz from 20 m above the basal shear surface with an extraction window of 30 m. Mass transport deposit frontal margin obstructed by a mud volcano crater. Low amplitude, concave downslope pressure ridges are visible in the mass transport deposit. Several more mud volcanoes (low amplitude, circular features) are shown to the bottom right of the image. Arrows show the material transport direction. RMS Amplitude extraction taken from mass transport deposit MTD‐14 on the Shah Deniz fold, 25 m above the basal shear surface with a 25 m extraction window. List of kinematic and palaeo slope direction indicators present in each mass transport deposit and mass transport complex.Please note: Wiley‐Blackwell is not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.

Supporting info item

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error