1887
Volume 21, Issue 4
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

Analysis of three‐dimensional (3D) seismic reflection data from the Norwegian continental margin provides an insight into an unusual, buried submarine slope failure, which occurred adjacent to the later Holocene‐age Storegga Slide. The identified failure, informally named the ‘South Vøring Slide’ (SVS), occurs in fine‐grained hemipelagic and contourite sediments on a slope of 0.5°, and is characterised by a deformed seismic facies unit consisting of closely spaced pyramidal blocks and ridges bound by small normal faults striking perpendicular to the slope. The SVS contrasts with other previously described submarine slope failures in that it cannot be explained by a retrogressive model. The defining characteristic is the high relative volume loss. The area affected by sliding has thinned by some 40%, seen in combination with very modest extension in the translation direction, with line length balancing yielding an extension value of only 4.5%. The volume loss is explained by the mobilisation of an approximately 40 m thick interval at the lower part of the unit and its removal from beneath a thin overburden, which subsequently underwent extensional fragmentation. Evidence for the mobilisation of a thick fine‐grained interval in the development of a submarine slope failure from a continental margin setting may have implications for the origins of other large‐scale slope failures on the Norwegian margin and other glacially influenced margins worldwide.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2008.00390.x
2008-12-19
2024-04-26
Loading full text...

Full text loading...

References

  1. Abbott, P.L. (1996) Natural Disasters. Wm. C. Brown Publishing Co, Dubuque, IA.
    [Google Scholar]
  2. Berg, K., Solheim, A. & Bryn, P. (2005) The Pleistocene to recent geological development of the Ormen Lange area. Mar. Pet. Geol., 22, 45–56.
    [Google Scholar]
  3. Berndt, C., Bünz, S., Clayton, T., Mienert, J. & Saunders, M. (2004) Seismic character of bottom simulating reflectors: examples from the mid-Norwegian margin. Mar. Pet. Geol., 21, 723–733.
    [Google Scholar]
  4. Bjerrum, L. (1967) Progressive failure in slopes of overconsolidated plastic clay and clay shales. J. Soil Mech. Foundations Div. Am. Soc. Civil Eng., 93, 1–49.
    [Google Scholar]
  5. Brekke, H. (2000) The tectonic evolution of the Norwegian Sea and continental margin with emphasis on the Vøring and Møre Basins. In: Dynamics of the Norwegian Margin (Ed. by A.Nøttveddt , et al.) Geol. Soc. Spec. Publ. , 167, 327–378.
    [Google Scholar]
  6. Brown, E.H., Holbrook, W.S., Hornbach, M.J. & Nealon, J. (2006) Slide structure and role of gas hydrate at the northern boundary of the storegga slide, offshore Norway. Mar. Geol., 229, 179–186.
    [Google Scholar]
  7. Bryn, P., Berg, K., Forsberg, C.F., Solheim, A. & Kvalstad, T.J. (2005a) Explaining the storegga slide. Mar. Pet. Geol., 22, 11–19.
    [Google Scholar]
  8. Bryn, P., Berg, K., Stoker, M.S., Haflidason, H. & Solheim, A. (2005b) Contourites and their relevance for mass wasting along the Mid‐Norwegian margin. Mar. Pet. Geol., 22, 85–96.
    [Google Scholar]
  9. Bugge, T. (1981) Submarine slides on the Norwegian continental margin, with special emphasis on the Storegga area. Institutt for kontinentalsokkelundersøkelser, 110, 1–152.
    [Google Scholar]
  10. Bull, S., Cartwright, J. & Huuse, M.A review of kinematic indicators from Mass Transport Complexes using 3D seismic data. Mar. Pet. Geol. (in press).
    [Google Scholar]
  11. Bünz, S., Mienert, J., Vanneste, M. & Andreassen, K. (2005) Fluid flow impact on slope failure from 3D seismic data: a case study in the Storegga Slide. Basin Res., 17, 109–122.
    [Google Scholar]
  12. Canals, M., Lastras, G., Urgeles, R., Casamor, J.L., Mienert, J., Cattaneo, A., De Batist, M., Haflidason, H., Imbo, Y., Laberg, J.S., Locat, J., Long, D., Longva, O., Masson, D.G., Sultan, H., Trincardi, F. & Bryn, P. (2004) Slope failure dynamics and impacts from seafloor and shallow sub‐seafloor geophysical data: case studies from the COSTA project. Mar. Geol., 213, 9–72.
    [Google Scholar]
  13. Carson, M.A. (1977) On the retrogression of landslides in sensitive muddy sediments. Can. Geotech. J., 14, 582–602.
    [Google Scholar]
  14. Cartwright, J. (2007) The impact of 3D seismic data on the understanding of compaction, fluid flow and diagenesis in sedimentary basins. J. Geol. Soc. Lond., 164, 881–893.
    [Google Scholar]
  15. Collinson, J. (1994) Sedimentary deformational structures. In: The Geological Deformation of Sediments (Ed. by A.Maltman ), pp. 127–165. Chapman & Hall, London.
    [Google Scholar]
  16. Davies, R. & Clark, I. (2006) Submarine slope failure primed and triggered by silica and its diagenesis. Basin Res., 18, 339–350.
    [Google Scholar]
  17. Embley, R.W. & Jacobi, R. (1977) Distribution and morphology of large submarine sediment slides and slumps on the Atlantic continental margins. Mar. Geotechnol., 2, 205–208.
    [Google Scholar]
  18. Evans, D., King, E.L., Kenton, N.H., Brett, C. & Wallis, D. (1996) Evidence for long‐term instability in the Storegga Slide region off western Norway. Mar. Geol., 130, 281–292.
    [Google Scholar]
  19. Evans, D., Mcgiveron, S., Harrison, Z., Bryn, P. & Berg, K. (2002) Along‐slope variation in the late Neogene evolution of the mid‐Norwegian margin in response to uplift and tectonism. In: Exhumation of the North Atlantic Margin: Timing, Mechanisms and Implications for Petroleum Exploration (Ed. by A.G.Doré , J.A.Cartwright , S.Stoker , J.P.Turner & N.White ), Geol. Soc. Spec. Publ. , Vol. 196, 139–151.
    [Google Scholar]
  20. Farrell, S.G. (1984) A dislocation model applied to slump structures, Ainsa Basin, South Central Pyrenees. J. Struct. Geol., 6, 727–736.
    [Google Scholar]
  21. Forsberg, C.F. & Locat, J. (2005) Mineralogical and microstructural development of the sediments on the Mid‐Norwegian margin. Mar. Pet. Geol., 22, 109–122.
    [Google Scholar]
  22. Frey Martinez, J., Cartwright, J. & Hall, B. (2005) 3D Seismic interpretation of slump complexes: examples from the continental margin of Israel. Basin Res., 17, 83–108.
    [Google Scholar]
  23. Frey Martinez, J., Cartwright, J. & James, D. (2006) Frontally confined versus frontally emergent submarine landslides: a 3D seismic characterisation. Mar. Pet. Geol., 23, 585–604.
    [Google Scholar]
  24. Gee, M.J.R., Gawthorpe, R.L. & Friedmann, J.S. (2005) Giant striations at the base of a submarine landslide. Mar. Geol., 214, 287–294.
    [Google Scholar]
  25. Gratchev, I.B., Sassa, K., Osipov, V.I. & Sokolov, V.N. (2006) The liquefaction of clayey soils under cyclic loading. Eng. Geol., 86, 70–84.
    [Google Scholar]
  26. Hampton, M.A., Lee, H.J. & Locat, J. (1996) Submarine landslides. Rev. Geophys., 34, 33–59.
    [Google Scholar]
  27. Hjelstuen, B.O., Sejrup, H.P., Haflidason, H., Nygård, A., Berstad, I.M. & Knorr, G. (2004) Late Quaternary seismic stratigraphy and geological development of the south Vøring Margin, Norwegian Sea. Quaternary Sci. Rev., 23, 1847–1865.
    [Google Scholar]
  28. Hjelstuen, B.O., Sejrup, H.P., Haflidason, H., Nygård, A., Ceramicola, S. & Bryn, P. (2005) Late Cenozoic glacial history and evolution of the Streogga Slide area and adjacent slide flank regions, Norwegian continental margin. Mar. Pet. Geol., 22, 57–69.
    [Google Scholar]
  29. Huvenne, V.A.I., Croker‐Peter, F. & Henriet, J.P. (2002) A refreshing 3D view of an ancient sediment collapse and slope failure. Terra Nova, 14, 33–40.
    [Google Scholar]
  30. King, E.L., Sejrup, H.P., Haflidason, H., Elverhøi, A. & Aarseth, I. (1996) Quaternary seismic stratigraphy of the North Sea fan: glacially-fed gravity flow aprons hemipelagic sediments, and large submarine slides. Mar. Geol., 130, 293–315.
    [Google Scholar]
  31. Lewis, K.B. (1971) Slumping on a continental slope inclined at 1–4°. Sedimentology, 16, 97–110.
    [Google Scholar]
  32. Locat, J. & Lee, H.J. (2002) Submarine landslides: advances and challenges. Can. Geotech. J., 39, 193–212.
    [Google Scholar]
  33. Maltman, A.J. (1994) Introduction and overview. In: The Geological Deformation of Sediments (Ed. by A.Maltman ), pp. 127–165. Chapman & Hall, London.
    [Google Scholar]
  34. Maltman, A.J. & Bolton, A. (2003) How sediments become mobilized. In: Subsurface Sediment Mobilization (Ed. by P.Van Rensbergen , R.R.Hills , A.J.Maltman & C.K.Morley ), Geol. Soc. Spec. Publ. , 216, 9–21.
    [Google Scholar]
  35. Martel, S.J. (2004) Mechanics of landslide initiation as a shear fracture phenomenon. Mar. Geol., 203, 319–339.
    [Google Scholar]
  36. Martinsen, O.J. (1994) Mass movements. In: The Geological Deformation of Sediments (Ed. by A.Maltman ), pp. 127–165. Chapman & Hall, London.
    [Google Scholar]
  37. Mollard, J.D. & Hughes, G.T. (1973) Earthflows in the Grondines and Trois Riviéres area, Québec: discussion. Can. J. Earth Sci., 10, 324–328.
    [Google Scholar]
  38. Moore, D.G., Curray, J.R. & Emmel, F.J. (1976) Large submarine slide (olistostrome) associated with Sunda Arc subduction zone, northeast Indian Ocean. Mar. Geol., 21, 211–226.
    [Google Scholar]
  39. Moscardelli, L., Wood, L. & Mann, P. (2006) Mass‐transport complexes and associated processes in the offshore area of Trinidad and Venezuela. AAPG Bull., 90, 1059–1088.
    [Google Scholar]
  40. Mulder, T. & Cochonant, H.P. (1996) Classification of offshore mass movements. J. Sediment. Res., 66, 43–57.
    [Google Scholar]
  41. Odenstad, S. (1951) The landslide at Sköttorp on the Lidan River. Proc. R. Swed. Geotech. Inst., 4, 1–38.
    [Google Scholar]
  42. O'leary, D.W. (1993) Submarine mass movement, a formative process of passive continental margins: the Munsen‐Nygren landslide complex and the southeast New England landslide complex. In: Submarine Landslides: Selected Studies in the US Exclusive Economic Zone (Ed. by W.C.Schwab , H.J.Lee & D.C.Twichell ), US Geol. Survey Bull. 2002 , 23–39.
    [Google Scholar]
  43. Petley, D.N., Higuchi, T., Petley, D.J., Bulmer, M.H. & Carey, J. (2005) Development of progressive landslide failure in cohesive materials. Geology, 33, 201–204.
    [Google Scholar]
  44. Posamentier, H.W. & Kolla, V. (2003) Seismic geomorphology and stratigraphy of depositional elements in deep‐water settings. J. Sediment. Res., 73, 367–388.
    [Google Scholar]
  45. Pratson, L.F. (2001) A perspective on what is known and what is not known about seafloor instability in the context of continental margin evolution. Mar. Pet. Geol., 18, 499–501.
    [Google Scholar]
  46. Rosenqvist, I.T. (1966) Norwegian research into the properties of quick clay – a review. Eng. Geol., 1, 445–450.
    [Google Scholar]
  47. Tréhu, A.M., Bohrmann, G., Rack, F.R., Torres, M.E., et al. (2003) Proceedings of the Ocean Drilling Program, Initial Reports, 204.
  48. Trincardi, F. & Normark, W.R. (1989) Pleistocene Suvero slide, Paola basin, southern Italy. Mar. Pet. Geol., 6, 324–335.
    [Google Scholar]
  49. Varnes, D.J. (1978) Slope movement types and processes. In: Landslides, Analysis and Control. Special Report (Ed. by R.L.Schuster & R.J.Krizek ), Natl. Acad. Sci. [Washington] Spec. Rep.176, 11–33.
    [Google Scholar]
  50. Volpi, V., Camerlenghi, A., Hillenbrand, C.‐D., Rebesco, M. & Ivaldi, R. (2003) Effects of biogenic silica on sediment compaction and slope stability on the Pacific margin of the Antarctic Peninsula. Bas. Res., 15, 339–363.
    [Google Scholar]
  51. Woodcock, N.H. (1979) Sizes of submarine landslides and their significance. J. Struct. Geol., 1, 137–142.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2008.00390.x
Loading
/content/journals/10.1111/j.1365-2117.2008.00390.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error