1887
Volume 20 Number 1
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

This paper delineates our use of 10 708 km2 of three‐dimensional (3D) seismic data from the continental margin of Trinidad and Tobago West Indies to describe a series of mass transport complexes (MTCs) that were deposited during the Plio‐Pleistocene. This area, situated along the obliquely converging boundary of the Caribbean/South American plates and proximal to the Orinoco Delta, is characterized by catastrophic shelf‐margin processes, intrusive/extrusive mobile shales and active tectonism. Extensive mapping of different stratigraphic intervals of the 3D seismic survey reveals several MTCs that range in area from 11.3 to 2017 km2. Three types of MTCs are identified: (1) shelf‐attached systems that were fed by shelf‐edge deltas whose sediment input is controlled by sea‐level fluctuations and sedimentation rates; (2) slope‐attached systems, which occur when upper‐slope sediments catastrophically fail owing to gas‐hydrate disruptions and/or earthquakes and (3) locally detached systems, formed when local instabilities in the seafloor trigger relatively small collapses. Such classification of the relationship between slope mass failures and sourcing regions enables a better understanding of the nature of initiation, length of development history and petrography of such MTCs. 3D seismic enables more accurate calculation of deposit volumes, improves deposit imaging, and, thus, increases the accuracy of physical and computer simulations of mass failure processes.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2007.00340.x
2007-10-25
2024-04-26
Loading full text...

Full text loading...

References

  1. Aksu, A.E. & Hiscott, R.N. (1989) Slides and debris flows on the high‐latitude continental slopes of Baffin Bay. Geology, 17, 885–888.
    [Google Scholar]
  2. Babb, S. & Mann, P. (1999) Structural and sedimentary development of a neogene transpressional plate boundary between the Caribbean and South American Plates in Trinidad and the Gulf of Paria. Sediment. Basins World, 4, 495–557.
    [Google Scholar]
  3. Boettcher, S.S., Jackson, J.L., Quinn, M.J. & Neal, J.E. (2003) Lithospheric structure and supracrustal hydrocarbon systems, Offshore Eastern Trinidad. AAPG Mem., 79, 529–544.
    [Google Scholar]
  4. Bouriak, S., Vanneste, M. & Saoutkine, A. (2000) Inferred gas hydrates and clay diapirs near the storegga slide on the Southern edge of the Voring Plateau, Offshore Norway. Mar. Geol., 163, 125–148.
    [Google Scholar]
  5. Brami, T.R., Pirmez, C., Archie, C., Holman, K.W.P., Slatt, R.M., Coleman, J., Rosen, N.C., Nelson, H., Bouma, A.H., Styzen, M.J. & Lawrence, D.T. (2000) Late Pleistocene deep‐water stratigraphy and depositional processes, Offshore Trinidad and Tobago. Deep‐Water Reservoirs of the World, Gulf Coast Section SEPM 20th Annual Research Conference.
  6. Bryant, E. (2001) Tsunami; The Underrated Hazard. Cambridge University Press, Cambridge.
    [Google Scholar]
  7. Campbell, D.C., Shimeld, J.W., Mosher, D.C. & Piper, D.J.W. (2004) Relationships between sediment mass‐failure modes and magnitudes in the evolution of the Scotian slope, Offshore Nova Scotia. Offshore Technology Conference, Houston, TX.
  8. Carr‐Brown, B. (1972) The holocene/pleistocene contact in the offshore area east of Galeota Point, Trinidad, West Indies. Trans. Caribb. Geol. Conf., 6, 381.
    [Google Scholar]
  9. Chen, Q. & Sidney, S. (1997) Seismic attribute technology for reservoir forecasting and monitoring. The Leading Edge, 16, 445–450.
    [Google Scholar]
  10. Dawson, A.G., Lockett, P. & Shi, S. (2004) Tsunami hazards in Europe. Environment Int., 30, 577–585.
    [Google Scholar]
  11. Diaz de Gamero, M.L. (1996) The changing course of the Orinoco river during the Neogene: a review. Palaeogeogr. Palaeoclimatol. Palaeoecol., 123, 385–402.
    [Google Scholar]
  12. Dott, R.H. (1963) Dynamics of subaqueous gravity depositional processes. AAPG Bull., 47, 104–128.
    [Google Scholar]
  13. Embley, R.M. & Jacobi, R. (1986) Mass Wasting in the Western North Atlantic. Geological Society of America, Boulder, CO.
    [Google Scholar]
  14. Evans, D., King, E.L., Kenyon, N.H., Brett, C. & Wallis, D. (1996) Evidence for long‐term instability in the storegga slide region off Western Norway. Mar. Geol., 130, 281–292.
    [Google Scholar]
  15. Farrell, S.G. (1984) A dislocation model applied to slump structures, Ainsa Basin, South Central Pyrenees. J. Struct. Geol., 6, 727–736.
    [Google Scholar]
  16. Farrell, S.G. & Eaton, S. (1988) Foliations developed during slump deformation of Miocene Marine Sediments, cyprus. J. Struct. Geol., 10, 567–576.
    [Google Scholar]
  17. Flood, R.D., Piper, D.J.W., Klaus, A., Burns, S.J., Busch, W.H., Cisowski, S.M., Cramp, A., Damuth, J.E., Goni, M.A., Haberle, S.G., Hall, F.R., Hinrichs, K.‐U., Hiscott, R.N., Kowsmann, R.O., Kronen, J.D., Long, D., Lopez, M., McDaniel, D.K., Manley, P.L., Maslin, M.A., Mikkelsen, N., Nanayama, F., Normark, W.R., Pirmez, C., Dos Santos, J.R., Schneider, R.R., Showers, W.J., Soh, W. & Thibal, J. (1995) Proceedings of the Ocean Drilling Program, Part A: Initial Reports, 155.
  18. Fryer, G.J., Watts, P. & Pratson, L.F. (2004) Source of the great tsunami of 1 April 1946; a landslide in the upper aleutian forearc. Mar. Geol., 203, 201–218.
    [Google Scholar]
  19. Frey‐Martinez, J., Cartwright, J. & Hall, B. (2005) 3D seismic interpretation of slump complexes: examples from the continental margin of Israel. Basin Res., 17, 83–108.
    [Google Scholar]
  20. Frey‐Martinez, J., Cartwright, J. & James, D. (2006) Frontally confined versus frontally emergent submarine landslides: a 3D seismic characterization. Mar. Petrol. Geol., 23, 585–604.
    [Google Scholar]
  21. Gao, D. (2006) Gravitational sliding on the Mid‐Atlantic ridge at the kane transform: implications for submarine basin-slope degradation and deformation. AAPG Bull., 90, 159–176.
    [Google Scholar]
  22. Garciacaro, E.J. (2006) Stratigraphic architecture and basin fill evolution of a plate margin basin, Eastern Offshore Trinidad and Venezuela. Master's Thesis, The University of Texas at Austin.
  23. Gee, M.J.R., Gawthorpe, R.L. & Friedmann, S.J. (2006) Triggering and evolution of a Giant Submarine Landslide, Offshore Angola, revealed by 3D seismic stratigraphy and geomorphology. J. Sediment. Res., 76, 9–19.
    [Google Scholar]
  24. Gee, M.J.R., Masson, D.G, Watts, A.B. & Allen, P.A. (1999) The Saharan debris flow: an insight into the mechanics of long runout submarine debris flows. Sedimentology, 46, 317–335.
    [Google Scholar]
  25. Gee, M.J.R., Watts, A.B., Masson, D.G. & Mitchell, N.C. (2001) Landslides and the evolution of El hierro in the Canary Islands. Mar. Geol., 177, 271–293.
    [Google Scholar]
  26. Haflidason, H.L., Reidar Sejrup, H.P., Forsberg, C.F. & Bryn, P. (2005) The dating and morphometry of the storegga slide. Mar. Petrol. Geol., 22, 123–136.
    [Google Scholar]
  27. Heppard, P.D., Cander, H.S. & Eggertson, E.B. (1998) Abnormal pressure and the occurrence of hydrocarbons in Offshore Eastern Trinidad, West Indies. AAPG Mem., 70, 215–246.
    [Google Scholar]
  28. Hoffman, J.S., Kaluza, M.J., Griffiths, R., McCullough, G., Hall, J. & Nguyen, T. (2004) Addressing the challenges in the placement of seafloor infrastructure on the east breaks slide ‐ a case study: The Falcon Field (Eb 579/623): Northwestern Gulf of Mexico. Offshore Technology Conference, Houston, TX.
    [Google Scholar]
  29. Holmes, R., Long, D. & Dodd, L.R. (1998) Large‐scale debrites and submarine landslides on the Barra Fan, West of Britain. Geol. Soc. Spec. Publ., 129, 67–79.
    [Google Scholar]
  30. Jansen, E., Befring, S., Bugge, T., Eidvin, T., Holtedahl, H. & Sejrup, H.P. (1987) Large submarine slides on the Norwegian Continental Margin; sediments, transport and timing. Mar. Geol., 78, 77–107.
    [Google Scholar]
  31. Kleverlaan, K. (1987) Gordo Megabed; a possible seismite in a Tortonian Submarine Fan, Tabernas Basin, Province Almeria, Southeast Spain. Sediment. Geol., 51, 165.
    [Google Scholar]
  32. Knutz, P.C., Austin, W.E.N. & Jones, E.J. (2001) Millenial‐scale depositional cycles related to British ice sheet variability and North Atlantic Paleocirculation since 45 Kyr B.P., Barra Fan, U.K. Margin. Paleoceanography, 16, 53–64.
    [Google Scholar]
  33. Laberg, J.S. & Vorren, T.O. (2000) The Traenadjupet slide, Offshore Norway; morphology, evacuation and triggering mechanisms. Mar. Geol., 171, 95–114.
    [Google Scholar]
  34. Laberg, J.S., Vorren, T.O., Dowdeswell, J.A., Kenyon, N.H. & Taylor, J. (2000) The Andoya Slide and the Andoya Canyon, North‐Eastern Norwegian‐Greenland Sea. Mar. Geol., 162, 259–275.
    [Google Scholar]
  35. Lastras, G., De Blasio, F.V., Canals, M. & Elverhoi, A. (2005) Conceptual and numerical modeling of the big ‘95 debris flow, Western Mediterranean Sea. J. Sediment. Res., 75, 784–797.
    [Google Scholar]
  36. Lee, C., Nott, J.A., Keller, F.B. & Parrish, A.R. (2004a) Seismic Expression of the Cenozoic Mass Transport Complexes, Deepwater Tarfaya‐Agadir Basin, Offshore Morocco. Offshore Technology Conference, Houston, TX.
  37. Lee, H.J., Normark, W.R., Fisher, M.A., Greene, G., Edwards, B.D. & Locat, J. (2004b) Timing and extent of submarine landslides in Southern California. Offshore Technology Conference, Houston, TX.
  38. Macdonald, D.I.M., Moncrieff, A.C.M. & Butterworth, P.J. (1993) Giant slide deposits from a Mesozoic fore‐arc basin, Alexander Island, Antarctica. Geology, 21, 1047–1050.
    [Google Scholar]
  39. Marr, J.G., Harff, P.A., Shanmugam, G. & Parker, G. (2001) Experiments on subaqueous sandy gravity flows: the role of clay and water content in flow dynamics and depositional structures. GSA Bull., 113, 1377–1386.
    [Google Scholar]
  40. Martel, S.J. (2004) Mechanics of landslide initiation as a shear fracture phenomenon. Mar. Geol., 203, 319–339.
    [Google Scholar]
  41. Maslin, M., Owen, M., Day, S. & Long, D. (2004) Linking continental‐slope failures and climate change: testing the clathrate gun hypothesis. Geology, 32, 53–56.
    [Google Scholar]
  42. Maslin, M., Vilela, C., Mikkelsen, N. & Grootes, P. (2005) Causes of catastrophic sediment failures of the Amazon fan. Quatern. Sci. Rev., 24, 2180–2193.
    [Google Scholar]
  43. Masson, D.G., Canals, M., Alonso, B., Urgeles, R. & Huhnerbach, V. (1998) The canary debris flow; source area morphology and failure mechanisms. Sedimentology, 45, 411.
    [Google Scholar]
  44. Masson, D.G., Van Niel, B. & Weaver, P.P.E. (1997) Flow processes and sediment deformation in the canary debris flow on the Nw African Continental Rise. Sediment. Geol., 110, 163–179.
    [Google Scholar]
  45. McAdoo, B.G., Pratson, L.F. & Orange, D.L. (2000) Submarine landslide geomorphology, U.S. Continental slope. Mar. Geol., 169, 103.
    [Google Scholar]
  46. McGilvery, T.A. & Cook, D.L.R. (2003) The influence of local gradients on accommodation space and linked depositional elements across a stepped slope profile, Offshore Brunei. In: Shelf Margin Deltas and Linked Down Slope Petroleum Systems: Global Significance and Future Exploration Potential: Gulf Coast Section SEPM 23rd Annual Research Conference (Ed. by RobertsH.H. , RosenN.C. , FilonR.H. & AndersonJ.B. ), pp. 387–419. SEPM, Houston, TX.
    [Google Scholar]
  47. McGilvery, T.A., Haddad, G. & Cook, D.L. (2004) Seafloor and shallow subsurface examples of mass transport complexes, Offshore Brunei. Offshore Technology Conference, Houston, TX.
  48. McMurtry, G.M., Watts, P., Fryer, G.J., Smith, J.R. & Imamura, F. (2004) Giant landslides, Mega‐Tsunamis, and Paleo‐Sea Level in the Hawaiian Islands. Mar. Geol., 203, 219–233.
    [Google Scholar]
  49. Mize, K.L., Wood, L.J. & Mann, P. (2004) Controls on the morphology and development of deep‐marine channels, Eastern Offshore Trinidad and Venezuela. AAPG Annu. Meeting Program, 13, A98.
    [Google Scholar]
  50. Montoya, P. (2006) Salt tectonics and sequence‐stratigraphic history of minibasins near the Sigsbee Escarpment, Gulf of Mexico. PhD Thesis, The University of Texas at Austin.
  51. Moscardelli, L., Wood, L. & Mann, P. (2006) Mass‐transport complexes and associated processes in the Offshore Area of Trinidad and Venezuela. AAPG Bull., 90, 1059–1088.
    [Google Scholar]
  52. Nardin, T.R., Hein, F.J., Gorsline, D.S. & Edwards, B.D. (1979) A review of mass movement processes, sediment, and acoustic characteristics and contrasts in slope and base‐of‐slope systems versus canyon‐fan‐basin floor systems. Spec. Publ. – Soc. Economic Paleontologists Mineralogists, 27, 61–73.
    [Google Scholar]
  53. Newton, C.S., Shipp, R.C., Mosher, D.C. & Wach, G.D. (2004) Importance of mass transport complexes in the quaternary development of the Nile Fan, Egypt. Offshore Technology Conference, Houston, TX.
  54. Nisbet, E. & Piper, D.J.W. (1998) Giant submarine landslides. Nature (London), 392, 329–330.
    [Google Scholar]
  55. Nissen, S.E., Haskell, N.L., Steiner, C.T. & Coterill, K.L. (1999) Debris flow outrunner blocks, glide tracks, and pressure ridges identified on the Nigerian Continental Slope using 3‐D seismic coherency. The Leading Edge, 18, 595–599.
    [Google Scholar]
  56. Norem, H., Locat, J. & Schieldrop, B. (1990) An approach to the physics and the modeling of submarine flowslides. Mar. Geotechnol., 9, 93–111.
    [Google Scholar]
  57. Normark, W.R. (1974) Ranger submarine slide, Northern Sebastian Vizcaino Bay, Baja California, Mexico. GSA Bull., 85, 781–784.
    [Google Scholar]
  58. Pelinovsky, E. & Poplavsky, A. (1996) Simplified model of tsunami generation by submarine landslides. Phys. Chem. Earth, 21, 13–17.
    [Google Scholar]
  59. Pickering, K.T. & Corregidor, J. (2005) Mass‐transport complexes (mtcs) and tectonic control on basin‐floor submarine fans, Middle Eocene, South Spanish Pyrenees. J. Sediment. Res., 75, 761.
    [Google Scholar]
  60. Piper, D.J.W., Pirmez, C., Manley, P.L., Long, D., Flood, R.D., Normark, W.R., Showers, W.J., Flood, R.D., Piper, D.J.W., Klaus, A., Burns, S.J., Busch, W.H., Cisowski, S.M., Cramp, A., Damuth, J.E., Goni, M.A., Haberle, S.G., Hall, F.R., Hinrichs, K.‐U., Hiscott, R.N., Kowsmann, R.O., Kronen, J.D., Long, D., Lopez, M., McDaniel, D.K., Manley, P.L., Maslin, M.A., Mikkelsen, N., Nanayama, F., Normark, W.R., Pirmez, C., Dos Santos, J.R., Schneider, R.R., Showers, W.J., Soh, W. & Thibal, J. (1997) Mass‐transport deposits of the Amazon fan. Proc. Ocean Drilling Progr. Sci. Res., 155, 109–146.
    [Google Scholar]
  61. Pirmez, C., Marr, J., Shipp, C. & Kopp, F. (2004) Observations and numerical modeling of debris flows in the Na Kika Basin, Gulf of Mexico. Offshore Technology Conference, Houston, TX.
  62. Popenoe, P., Schmuck, E.A. & Dillon, W.P. (1993) The cape fear landslide; slope failure associated with salt diapirism and gas hydrate decomposition. In: Submarine Landslides; Selected Studies in the U.S. Exclusive Economic Zone. U.S. Geological Survey Bulletin (Ed. by W.C.Schwab , H.J.Lee & D.C.Twichell ), pp. 40–53.
    [Google Scholar]
  63. Posamentier, H. (2004) Stratigraphy and geomorphology of deep‐water mass transport complexes based on 3D seismic data. Offshore Technology Conference, Houston, TX.
  64. Posamentier, H.W. & Kolla, V. (2003) Seismic geomorphology and stratigraphy of depositional elements in deep‐water settings. J. Sediment. Res., 73, 367–388.
    [Google Scholar]
  65. Shackleton, N.J. (1987) Oxygen isotopes, ice volume and sea level. Quatern. Sci. Rev., 6, 183–190.
    [Google Scholar]
  66. Shanmugam, G. (2000) A 50 years of the turbidite paradigm (1950s–1990s); deep‐water processes and facies models; a critical perspective. Mar. Petrol. Geol., 17, 285–342.
    [Google Scholar]
  67. Shanmugam, G. (2002) Ten turbidite myths. Earth-Sci. Rev., 58, 311–341.
    [Google Scholar]
  68. Shanmugam, G., Famakinwa, S.B., Hodgkinson, R.J.Blundell, L.C. & Anonymous (1997) Deep‐marine slump and debris‐flow dominated reservoirs of the Zafiro Field, Offshore Equatorial Guinea. AAPG Bull., 81, 1411.
    [Google Scholar]
  69. Shipp, C., Nott, J.A. & Newlin, J.A. (2004). Physical characteristics and impact of mass transport complexes on deepwater jetted conductors and suction anchor piles. Offshore Technology Conference, Houston, TX.
  70. Sullivan, S., Wood, L.J. & Mann, P. (2004) Distribution, Nature and origin of mobile mud features Offshore Trinidad. Salt‐Sediment Interactions and Hydrocarbon Prospectivity: Concepts, Applications, and Case Studies for the 21st Century, Houston, Texas, Gulf Coast Section SEPM.
  71. Sutter, J.R. (2006) Shelf margin systems: interface between shallow water sediment sources and deep water sinks. External Controls on Deep Water Depositional Systems: Climate, Sea‐Level and Sediment Flux, London, UK.
  72. Sydow, J.C., Finneran, J. & Bowman, A.P.R. (2003) Stacked shelf‐edge reservoirs of the Columbus Basin, Trinidad, West Indies. In: Shelf Margin Deltas and Linked Down Slope Petroleum Systems: Global Significance and Future Exploration Potential: Gulf Coast Section SEPM 23rd Annual Research Conference (Ed. by H.H.Roberts , N.C.Rosen , R.H.Fillon & J.B.Anderson ), pp. 411–465.
    [Google Scholar]
  73. Thompson, L.G., Mosley‐Thompson, E., Davis, M.E., Lin, P.N., Henderson, K.A., Cole‐Dai, J., Bolzan, J.F. & Liu, K.B. (1995) Late glacial stage and holocene tropical ice core records from huscaran, peru. Science, 269, 46–50.
    [Google Scholar]
  74. Twichell, D.C., Schwab, W.C., Nelson, C.H. & Kenyon, N.H. (2006) The effects of submarine canyon and proximal fan processes on the depositional systems of the distal Mississippi fan. External Controls on Deep Water Depositional Systems: Climate, Sea‐Level and Sediment Flux, London, UK.
  75. Van Weering, T.C.E., Nielsen, T., Kenyon, N.H., Akentieva, K. & Kuijpers, A.H. (1998) Large submarine slides on the Ne Faeroe continental margin. Geol. Soc. Spec. Publ., 129, 5–17.
    [Google Scholar]
  76. Weimer, P. & Shipp, C. (2004) Mass transport complex: musing on the past uses and suggestions for future directions. Offshore Technology Conference, Houston, Texas.
  77. Wood, L.J. (2000) Chronostratigraphy and tectonostratigraphy of the Columbus Basin, Eastern Offshore Trinidad. AAPG Bull., 84, 1905–1928.
    [Google Scholar]
  78. Wynn, R.B. (2006) Timing and relation to climate/sea level of giant landslides and turbidity currents on the Northwest African continental margin, from Morocco to Senegal. External Controls on Deep Water Depositional Systems: Climate, Sea Level and Sediment Flux, London, UK.
  79. Wynn, R.B., Masson, D.G., Stow, D.A. & Weaver, P.P. (2000) The Northwest African slope apron: a modern analogue for deep-water systems with complex seafloor topography. Mar. Petrol. Geol., 17, 253–265.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2007.00340.x
Loading
/content/journals/10.1111/j.1365-2117.2007.00340.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error