1887
Volume 19, Issue 4
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

We present detailed data on channel morphology, valley width and grain size for three bedrock rivers crossing active normal faults which differ in their rate, history and spatial distribution of uplift. We evaluate the extent to which downstream changes in unit stream power correlate with footwall uplift, and use this information to identify which of the channels are likely to be undergoing a transient response to tectonics, and hence clarify the key geomorphic features associated with this signal. We demonstrate that rivers responding transiently to fault slip‐rate increase are characterised by significant long‐profile convexities (over‐steepened reaches), a loss of hydraulic scaling, channel aspect ratios which are a strong non‐linear function of slope, narrow valley widths, elevated coarse‐fraction grain‐sizes and reduced downstream variability in channel planform geometry. We are also able to quantify the steady‐state configurations of channels, that have adjusted to differing spatial uplift fields. The results challenge the application of steady‐state paradigms to transient settings and show that assumptions of power‐law width scaling are inappropriate for rivers, that have not reached topographic steady state, whatever exponent is used. We also evaluate the likely evolution of bedrock channels responding transiently to fault acceleration and show that the headwaters are vulnerable to beheading if the rate of over‐steepened reach migration is low. We estimate that in this setting the response timescale to eliminate long‐profile convexity for these channels is ∼1 Myr, and that typical hydraulic scaling is regained within 3 Myr.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2007.00337.x
2007-10-01
2024-04-26
Loading full text...

Full text loading...

References

  1. Accordi, G., Carbone, F., Civitelli, G., Corda, L., De Rita, D., Esu, D., Funicello, R., Kotsakis, T., Mariotti, G. & Sposato, A. (1986) Lithofacies map of Latium‐Abruzzo and neighbouring areas, Consiglio Nazionale delle Ricerche, Italy.
  2. Anders, A.H., Speigelman, M. & Rodgers, D.W. (1993) The growth of fault bonded tilt blocks. Tectonics, 12, 1451–1459.
    [Google Scholar]
  3. Baldwin, J.A., Whipple, K.X. & Tucker, G.E. (2003) Implications of the shear stress river incision model for the timescale of post‐orogenic decay of topography. J. Geophys. Res., 108 (B3), 2158, doi: DOI: 10.1029/2001JB0550.
    [Google Scholar]
  4. Bishop, P., Hoey, T.B., Jansen, J.D. & Artza, I.L. (2005) Knickpoint recession rate and catchment area: the case of uplift rivers in Eastern Scotland. Earth Surf. Process Landforms, 30, 767–778.
    [Google Scholar]
  5. Cavinato, G.P. (1993) Recent tectonic evolution of the quaternary deposits of the Rieti Basin (Central Apennines, Italy): Southern part. Geol. Romana, 29, 411–434.
    [Google Scholar]
  6. Cavinato, G.P., Carusi, C., Dall'Asta, M., Miccadei, E. & Piacentini, T. (2002) Sedimentary and tectonic evolution of Plio‐Pleistocene alluvial and lacustrine deposits of Fucino Basin (central Italy). Sediment. Geol., 148, 29–59.
    [Google Scholar]
  7. Cavinato, G.P. & De Celles, P.G. (1999) Extensional basins in tectonically bi‐modal central Apennines fold‐thrust belt, Italy: response to corner flow above a subducting slab in retrograde motion. Geology, 27, 955–958.
    [Google Scholar]
  8. Centamore, E. & Nisio, S. (2003) Effects of uplift and tilting in the Central‐Northern Apennines, Italy. Quatern. Int., 101–102, 93–101.
    [Google Scholar]
  9. Copeland, R.R., Biedenharn, D.S. & Fischenhein, J.C. (2000) Channel forming discharge. US Army Corps Eng. Rep., ERDC/CHL CHETN‐VIII‐5, 1–11.
    [Google Scholar]
  10. Cowie, P.A., Attal, M., Tucker, G.E., Whittaker, A.C., Naylor, M., Ganas, A. & Roberts, G.P. (2006) Investigating the surface process response to fault interaction and linkage using a numerical modeling approach. Basin Res., 18, 231–266.
    [Google Scholar]
  11. Cowie, P.A. & Roberts, G.P. (2001) Constraining slip rates and spacings for active normal faults. J. Struct. Geol., 23, 1901–1915.
    [Google Scholar]
  12. Dade, W.B. (2000) Grain size, sediment transport and channel pattern in alluvial rivers. Geomorphology, 35, 119–126.
    [Google Scholar]
  13. Dade, W.B. & Friend, P.F. (1998) Grain‐size, sediment transport regime and channel slope of alluvial rivers. J. Geol., 106, 661–675.
    [Google Scholar]
  14. D'Agostino, N., Jackson, J.A., Dramis, F. & Funiciello, R. (2001) Interactions between mantle upwelling, drainage evolution and active normal faulting: an example from the central Apennines (Italy). Geophys. J. Int., 147, 475–497.
    [Google Scholar]
  15. D'Agostino, N. & McKenzie, D. (1999) Convective support of long‐wavelength topography in the central Apennines (Italy). Terra Nova, 11, 234–238.
    [Google Scholar]
  16. Dadson, S.J., Hovius, N., Chen, H., Dade, W.B., Hsieh, M., Willett, S.D, Hu, J., Horng, J., Chen, M., Stark, C.P., Lague, D. & Lin, J. (2003) Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 426, 648–651.
    [Google Scholar]
  17. Duvall, A., Kirby, E. & Burbank, D.W. (2004) Tectonic and lithologic controls on channel profiles and processes in coastal California. J. Geophys. Res., 109 (F3), doi: DOI: 10.1029/2003JF086.
    [Google Scholar]
  18. Finlayson, D.P., Montgomery, D.R. & Hallet, B. (2002) Spatial co‐incidence of rapid inferred erosion with your metamorphic massifs in the Himalayas. Geology, 30, 219–222.
    [Google Scholar]
  19. Finnegan, N.J., Roe, G., Montgomery, D.R. & Hallet, B. (2005) Controls on the channel width of rivers: implications for modelling fluvial incision of bedrock. Geology, 33, 229–232.
    [Google Scholar]
  20. Galadini, F., Messina, P., Giacco, B. & Sposato, A. (2003) Early uplift history of the Abruzzi Apennines (Central Italy): available geomorphological constraints. Quat. Int., 101–102, 125–135.
    [Google Scholar]
  21. Giraudi, C. & Frezzotti, M. (1997) Late pleistocene glacial events in the Central Apennines, Italy. Quat. Res., 48, 280–290.
    [Google Scholar]
  22. Harbor, D. (1998) Dynamic equilibrium between an active uplift and the Sevier River, Utah. J. Geol., 106, 181–193.
    [Google Scholar]
  23. Howard, A.D., Dietrich, W.E. & Seidl, M.A. (1994) Modelling fluvial erosion on regional to continental scales. J. Geophys. Res., 99, 13997–13986.
    [Google Scholar]
  24. Howard, A.D. & Kerby, G. (1983) Channel changes in badlands. Geol. Soc. Am. Bull., 94, 739–752.
    [Google Scholar]
  25. Hunstad, I., Selvaggi, G., D'Agostino, N., England, P., Clarke, P. & Pierozzi, M. (2003) Geodetic strain in peninsular Italy between 1875 and 2001. Geophys. Res. Lett., 30 (4), 1181, doi: DOI: 10.1029/2002GL016447.
    [Google Scholar]
  26. Kirby, E., Whipple, K.X., Tang, W. & Chen, Z. (2003) Distribution of active rock uplift along the eastern margin of the Tibetan Plateau: inferences from bedrock channel longitudinal profiles. J. Geophys. Res., 108 (B4), 2217, doi: DOI: 10.129/2001JB0861.
    [Google Scholar]
  27. Knighton, D. (1998) Fluvial Forms and Processes. Edward Arnold, London, UK, 383 pp.
    [Google Scholar]
  28. Lavé, J. & Avouac, J.P. (2001) Fluvial incision and tectonic uplift across the Himalayas of central Nepal. J. Geophys. Res., 106, 26561–26591.
    [Google Scholar]
  29. Lavecchia, G., Brozzetti, F., Barchi, M., Menichetti, M. & Keller, J.V.A. (1994) Seismotectonic zoning in east‐central Italy deduced from analysis of the Neogeneto present deformations and related stress fields. Geol. Soc. Am. Bull., 106, 1107–1120.
    [Google Scholar]
  30. Leopold, L.B. & Maddock, T. (1953) The hydraulic geometry of stream channels and some physiographic implications. United States Geological Survey Professional Paper, 252.
  31. Manning, R. (1891) On the flow of water in open channels and pipes. Inst. Civil Eng. Ireland, 20, 161–207.
    [Google Scholar]
  32. Merrits, D.J. & Vincent, K.R. (1989) Geomorphic response of coastal streams to low, intermediate and high rates of uplift, Mendocino triple junction region, northern California. Geol. Soc. Am. Bull., 101, 1372–1388.
    [Google Scholar]
  33. Michetti, A.M., Brunamonte, F., Serva, L. & Vittori, E. (1996) Trench investigations of the 1915 Fucino earthquake fault scarps (Abruzzo, Central Italy): geological evidence of large historical events. J. Geophys. Res., 101, 5921–5936.
    [Google Scholar]
  34. Michetti, A.M. & Serva, L. (1990) New data on the seismotectonic potential of the Leonessa fault area, (Reiti, Central Italy). Rendiconti della Soc. Geol. Italiana, 13, 37–46.
    [Google Scholar]
  35. Milliman, J.D. & Syvitski, J.P. (1992) Geomorphic control of sediment discharge to the ocean; the importance of small mountain rivers. J. Geol., 100, 525–544.
    [Google Scholar]
  36. Montgomery, D.R. & Gran, K.B. (2001) Downstream variations in the width of bedrock channels. Water Res. Res., 31, 1841–1846.
    [Google Scholar]
  37. Morewood, N.C. & Roberts, G.P. (2002) Surface observations of active normal fault propagation: implications for growth. J. Geol. Soc., London, 159, 263–272.
    [Google Scholar]
  38. Mueller, E.R. & Pitlick, J. (2005) Morphologically based model of bed load transport capacity in a headwater stream. J. Geophys. Res., 110, F02016, doi: DOI: 10.1029/2003JF0117.
    [Google Scholar]
  39. Palumbo, L., Benedetti, L., Bourles, D., Cinque, A. & Finkel, R. (2004) Slip history of the Magnola fault (Apennines, Central Italy) from Cl‐36 surface exposure dating: evidence for strong earthquakes over the Holocene. Earth Planet. Sci. Lett., 225, 163–176.
    [Google Scholar]
  40. Pantosti, D., D'Addezio, G. & Cinti, F. (1996) Paleoseismicity of the Ovindoli–Pezza fault, central Apennines, Italy: a history including a large, previously unrecorded earthquake in the Middle Ages (860–1300 A.D.). J. Geophys. Res., 101, 5937–5960.
    [Google Scholar]
  41. Pazzaglia, F.J., Gardner, T.W. & Merrits, D.J. (1998) Bedrock fluvial incision and longitudinal profile development over geologic time scales determined by fluvial terraces. In: Rivers Over Rock (Ed. by K.J.Tinkler & E.E.Wohl ), Am. Geophys. Union Monogr . 107, 207–235.
    [Google Scholar]
  42. Ratto, S., Bonetto, F. & Comoglio, C. (2003) The October 2000 flooding in Valle d'Aosta (Italy): event description and land planning measures for the risk mitigation. Int. J. River Basin Manage., 1, 105–116.
    [Google Scholar]
  43. Rinaldo, A., Rodriguez‐Iturbe, I., Rigon, R., Bras, R.L., Ijjasz‐Vasquez, E. & Marani, E. (1992) Minimum energy and fractal structures of drainage networks. Water Resources Res., 28, 2183–2195.
    [Google Scholar]
  44. Roberts, G.P., Cowie, P., Papanikolaou, I. & Michetti, A.M. (2004) Fault scaling relationships, deformation rates and seismic hazards. An example from Lazio‐Abruzzo, central Italy. J. Struct. Geol., 26, 377–398.
    [Google Scholar]
  45. Roberts, G.P. & Michetti, A.M. (2004) Spatial and temporal variations in growth rates along active normal fault systems: an example from Lazio-Abruzzo, central Italy. J. Struct. Geol., 26, 339–376.
    [Google Scholar]
  46. Rodriguez‐Iturbe, I., Rinaldo, A., Rigon, R., Bras, R.L. & Ijjasz‐Vasquez, E. (1992) Energy dissipation, run‐off production and the three dimensional structure of channel networks. Water Resources Res., 28, 1095–1103.
    [Google Scholar]
  47. Selby, M.J. (1980) A rock mass strength classification for geomorphic purposes, with tests from Antarctica and New Zealand. Z. Geomorphol., 24, 31–51.
    [Google Scholar]
  48. Sklar, L. & Dietrich, W.E. (2001) Sediment and rock strength controls on river incision into bedrock. Geology, 29, 1087–1090.
    [Google Scholar]
  49. Snyder, N.P., Whipple, K.X., Tucker, G.E. & Merrits, D.J. (2000) Landscape response to tectonic forcing: digital elevation model analysis of stream profiles in the Mendocino triple junction region, Northern California. Geol. Soc. Am. Bull., 112, 1250–1263.
    [Google Scholar]
  50. Snyder, N.P., Whipple, K.X., Tucker, G.E. & Merrits, D.J. (2003) Channel response to tectonic forcing: field analysis of stream morphology and hydrology in the Mendocino triple junction region, Northern California. Geomorphology, 53, 97–127.
    [Google Scholar]
  51. Solyom, P. & Tucker, G.E. (2004) The effect of limited storm duration on landscape evolution, drainage basin geometry and hydrograph shapes. J. Geophys. Res., 109, F03012, doi: DOI: 10.1029/2003JF032.
    [Google Scholar]
  52. Stein, R.S. & Barrientos, S.E. (1985) Planar high angle faulting in the Basin and Range: geodetic analysis of the 1983 Borah Peak, Idaho earthquake. J. Geophys. Res., 93, 11355–11366.
    [Google Scholar]
  53. Tomkin, J.H., Brandon, M.T., Pazzaglia, F.J., Barbour, J.R. & Willett, S.D. (2003) Quantitative testing of bedrock incision models for the Clearwater River, NW Washington State. J. Geophys. Res., 108 (B6), 2308, doi: DOI: 10.1029/2001JB0862.
    [Google Scholar]
  54. Tozer, R.S.J., Butler, R.W.H. & Corrado, S. (2002) Comparing thin and thick skinned thrust tectonic models of the Central Apennines, Italy. EGU Stephan Mueller Spec. Publ. Ser., 1, 181–194.
    [Google Scholar]
  55. Tucker, G.E. & Bras, R.L. (1998) Hillslope processes, drainage density and landscape morphology. Water Resources Res., 34, 2751–2764.
    [Google Scholar]
  56. Tucker, G.E., Lancaster, S.T., Gasparini, N.M. & Bras, R.L. (2001a) The Channel‐Hillslope integrated landscape development (CHILD) model. In: Landscape Erosion and Evolution Modeling (Ed. by R.S.Harmon & W.W.DoeIII ), pp. 349–388. Kluwer Academic/Plenum Publishers.
    [Google Scholar]
  57. Tucker, G.E. & Whipple, K.X. (2002) Topographic outcomes predicted by stream erosion models: sensitivity analysis and inter-model comparison. J. Geophys. Res., 107 (B9), 2179, doi: DOI: 10.129/2001JB0162.
    [Google Scholar]
  58. Turowski, J.M., Lague, D., Crave, A. & Hovius, N. (2006) Experimental channel response to tectonic uplift. J. Geophys. Res., 111, F03008, doi: DOI: 10.1029/2005JF0306.
    [Google Scholar]
  59. Van der Beek, P. & Bishop, P. (2003) Cenozoic river profile development in the upper lachan catchment (SE Australia) as a test of quantitative fluvial incision models. J. Geophys. Res., 108 (B6), 2309, doi: DOI: 10.1029/2002JB02125.
    [Google Scholar]
  60. Whipple, K.X. (2004) Bedrock rivers and the geomorphology of active orogens. Ann. Rev. Earth Planet. Sci., 32, 151–185.
    [Google Scholar]
  61. Whipple, K.X., Hancock, G.S. & Anderson, R.S. (2000a) River incision into bedrock: mechanics and relative efficacy of plucking, abrasion and cavitation. Geol. Soc. Am. Bull., 112, 490–503.
    [Google Scholar]
  62. Whipple, K.X. & Tucker, G.E. (1999) Dynamics of the stream power incision model: implications for the height limits of mountain ranges, landscape response timescales and research needs. J. Geophys. Res., 104, 17661–17674.
    [Google Scholar]
  63. Whipple, K.X. & Tucker, G.E. (2002) Implications of sediment‐flux dependent river incision models for landscape evolution. J. Geophys. Res., 107 (B2), doi: DOI: 10.1029/2000JB044.
    [Google Scholar]
  64. Whittaker, A.C., Cowie, P.A., Attal, M., Tucker, G.E. & Roberts, G. (2007) Bedrock channel adjustment to tectonic forcing: implications for predicting river incision rates. Geology, 35, 103–106.
    [Google Scholar]
  65. Willett, S.D. & Brandon, M.T. (2002) On steady states in mountain belts. Geology, 30, 175–178.
    [Google Scholar]
  66. Willgoose, G. (2005) Mathematical modelling of whole landscape evolution. Ann. Rev. Earth Planet. Sci., 33, 443–459.
    [Google Scholar]
  67. Wobus, C.W., Tucker, G.E. & Anderson, R.S. (2006) Self‐formed bedrock channels. Geophys. Res. Lett., 33, L18408, doi: DOI: 10.1029/2006GL027182.
    [Google Scholar]
  68. Wolman, M.G. (1954) A method of sampling coarse river‐bed material. Trans. Am. Geophys. Union, 35, 951–956.
    [Google Scholar]
  69. Wohl, E. (2004) Limits of downstream hydraulic geometry. Geology, 32, 897–900.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2007.00337.x
Loading
/content/journals/10.1111/j.1365-2117.2007.00337.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error