1887
Volume 19, Issue 3
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

Detrital zircon geochronology of Neoproterozoic to Devonian sedimentary rocks from the Georgina and Amadeus basins has been used to track changes in provenance that reflect the development and inversion of the former Australian Superbasin. Through much of the Neoproterozoic, sediments appear to have been predominantly derived from local sources in the Arunta and Musgrave inliers. Close similarities between the detrital age signatures of late Neoproterozoic sedimentary rocks in the two basins suggests that they were contiguous at this time. A dominant population of 1.2–1.0 Ga zircon in Early Cambrian sediments of the Amadeus Basin reflects the uplift of the Musgrave Inlier during the Petermann Orogeny between 560 and 520 Ma, which shed a large volume of detritus northwards into the Amadeus Basin. Early Cambrian sedimentary rocks in the Georgina Basin have a much smaller proportion of 1.2–1.0 Ga detritus, possibly due to the formation of sub‐basins along the northern margin of the Amadeus Basin which might have acted as a barrier to sediment transfer. An influx of 0.6–0.5 Ga zircon towards the end of the Cambrian coincides with the transgression of the Larapintine Sea across central Australia, possibly as a result of intracratonic rifting. Detrital zircon age spectra of sedimentary rocks deposited within this epicontinental sea are very similar to those of coeval sedimentary rocks from the Pacific Gondwana margin, implying that sediment was transported into central Australia from the eastern continental margin. The remarkably consistent ‘Pacific Gondwana’ signature of Cambro‐Ordovician sediments in central and eastern Australia reflects a distal source, possibly from east Antarctica or the East African Orogen. The peak of the marine incursion into central Australia in the early to mid Ordovician coincides with granulite‐facies metamorphism at mid‐crustal depths between the Amadeus and Georgina basins (the Larapinta Event). The presence of the epicontinental sea, the relative lack of a local basement zircon component in Cambro‐Ordovician sedimentary rocks and their maturity suggest that metamorphism was not accompanied by mountain building, consistent with an extensional or transtensional setting for this tectonism. Sediments deposited at ∼435–405 and ∼365 Ma during the Alice Springs Orogeny have detrital age signatures similar to those of Cambro‐Ordovician sedimentary rocks, reflecting uplift and reworking of the older succession into narrow foreland basins adjacent to the orogen.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2007.00326.x
2007-08-28
2024-04-26
Loading full text...

Full text loading...

References

  1. Armstrong, R.A., De Wit, M.J., Reid, D., York, D. & Zartman, R. (1998) Cape Town's Table Mountain reveals rapid Pan African uplift of its basement rocks. J. Afr. Earth Sci., 27, 10–11.
    [Google Scholar]
  2. Barovich, K.M. & Foden, J. (2000) Nd isotope constraints on sources of Palaeozoic petroleum bearing rocks in the Amadeus Basin, central Australia. Geol. Soc. Aust., Abstr., 59, 22.
    [Google Scholar]
  3. Black, L.P. & Shaw, R.D. (1992) U–Pb zircon geochronology of prograde Proterozoic events in the Central and Southern Provinces of the Arunta Block, central Australia. Aust. J. Earth Sci., 39, 153–171.
    [Google Scholar]
  4. Black, L.P. & Shaw, R.D. (1995) An assessment, based on U–Pb zircon data, of Rb–Sr dating in the Arunta Inlier, central Australia. Precamb. Res., 71, 31–15.
    [Google Scholar]
  5. Blair, T.C. & Bilodeau, W.L. (1988) Development of tectonic cyclothems in rift, pull‐apart and foreland basins: sedimentary response to episodic tectonism. Geology, 16, 517–520.
    [Google Scholar]
  6. Bowring, S., Myrow, P., Landing, E., Ramezani, J. & Grotzinger, J. (2003) Geochronological constraints on terminal Neoproterozoic events and the rise of metazoans. Geophys. Res. Abstr., 5, 213–219.
    [Google Scholar]
  7. Bozhkov, N.A. (1986) The evolution of the mobile zones of Gondwana and Laurasia in the late Precambrian. Tectonophysics, 126, 125–135.
    [Google Scholar]
  8. Bradshaw, J.D. & Evans, P.R. (1988) Palaeozoic tectonics, Amadeus Basin, central Australia. APEA J., 28, 267–282.
    [Google Scholar]
  9. Buick, I.S., Hand, M., Williams, I.S., Mawby, J., Miller, J.A. & Nicoll, R.S. (2005) Detrital zircon provenance constraints on the evolution of the Harts Range Metamorphic Complex (central Australia): links to the Centralian Superbasin. J. Geol. Soc. London, 162, 777–787.
    [Google Scholar]
  10. Buick, I.S., Miller, J.A., Williams, I.S. & Cartwright, I. (2001a) Ordovician high‐grade metamorphism of a newly recognised late Neoproterozoic terrane in the northern Harts Range, central Australia. J. Metamorph. Geol., 19, 373–394.
    [Google Scholar]
  11. Buick, I.S., Miller, J.A., Williams, I.S., Hand, M. & Mawby, J. (2001b) Deep holes in the Centralian Superbasin, SHRIMP zircon constraints on the depositional age of granulites in the eastern Arunta Block. Geol. Soc. Aus., Abstr., 64, 13–14.
    [Google Scholar]
  12. Calver, C.R., Black, L.P., Everard, J.L. & Seymour, D.B. (2004) U–Pb zircon age constraints on late Neoproterozoic glaciation in Tasmania. Geology, 32, 893–896.
    [Google Scholar]
  13. Camacho, A., Compston, W., McCulloch, M. & McDougall, I. (1997) Timing and exhumation of eclogite facies shear zones, Musgrave Block, central Australia. J. Metamorph. Geol., 15, 735–751.
    [Google Scholar]
  14. Camacho, A., Hensen, B.J. & Armstrong, R. (2002) Isotopic test of a thermally driven intraplate orogenic model, Australia. Geology, 30, 887–890.
    [Google Scholar]
  15. Camacho, A., Simons, B. & Schmidt, P.W. (1991) Geological and palaeomagnetic significance of the Kulgera Dyke Swarm, Musgrave Block, NT, Australia. Geophys. J. Int., 107, 37–45.
    [Google Scholar]
  16. Cas, R.A.F. & Wright, J.V. (1988) Volcanic Successions, Modern and Ancient. Chapman & Hall, London.
    [Google Scholar]
  17. Claoué‐Long, J., Fraser, G., Huston, D., Neumann, N. & Worden, K. (2005) Towards a correlation of the earliest Proterozoic evolution in central Australia Annual Geoscience Exploration Seminar (AGES) 2005 Record of Abstracts. Northern Territory Geological Survey Record 2005‐01.
  18. Claoué‐Long, J.C., Compston, W., Roberts, J. & Fanning, C.M. (1995) Two Carboniferous ages: a comparison of SHRIMP zircon dating with conventional zircon ages and 40Ar/39Ar analysis. In: Geochronology Times Scales and Global Stratigraphic Correlation (Ed. by W.A.Berggren , D.V.Kent , M.‐P.Aubrey & J.Hardenbol ), SEPM Spec. Pub. , 54, 3–21.
    [Google Scholar]
  19. Claoué‐Long, J.C. & Hoatson, D. (2005) Proterozoic mafic–ultramafic intrusions in the Arunta Region, central Australia: Part 2: event chronology and regional correlations. Precamb. Res., 142, 134–158.
    [Google Scholar]
  20. Close, D., Scrimgeour, I. & Edgoose, C. (2003b) Compilation of geochronological data from the northwestern Musgrave Block, NT. Northern Territory Geological survey, Technical Report 2003–2005.
  21. Close, D., Scrimgeour, I., Edgoose, C., Cross, A., Claoué‐Long, J.C., Kinny, P. & Meixner, T. (2003a) Redefining the Warumpi Province. Annual Geoscience Exploration Seminar (AGES) 2003 record of Abstracts, Northern Territory Geological Survey Record 2003‐001.
  22. Close, D.F., Edgoose, C.J. & Scrimgeour, I.R. (2005) The Tjauwata Group: a late Mesoproterozoic rift succession underlying the southwestern Amadeus Basin. Central Australian Basins Symposium (CABS), Abstracts (pp. 39–40). Northern Territory Geological Survey, Darwin.
    [Google Scholar]
  23. Collins, W.J. & Shaw, R.D. (1995) Geochronological constraints on orogenic events in the Arunta Inlier: a review. Precamb. Res., 71, 315–346.
    [Google Scholar]
  24. Compston, D.M. (1995) Time constraints on the evolution of the Tennant Creek Block, northern Australia. Precamb. Res., 71, 107–129.
    [Google Scholar]
  25. Cook, P.J. (1972) Sedimentological studies on the Stairway Sandstone of central Australia. Bureau Mineral Resources, Aust. Bull., 95, 73pp.
    [Google Scholar]
  26. Corfu, F., Hanchar, J.M., Hoskin, P.W.O. & Kinny, P. (2003) Atlas of zircon textures. In: Zircon (Ed. by J.M.Hanchar & P.W.O.Hoskin ), Rev. Mineral. Geochem., 53, 468–500.
    [Google Scholar]
  27. Cross, A., Claoué‐Long, J.C. & Crispe, A.J. (2003) Summary of results. Joint NTGS‐GA geochronlogy project: Tanami Region 2001–2002. Northern Territory Geological Survey Record 2003‐006.
  28. Cross, A. & Crispe, A.J. (2007) SHRIMP U–Pb analyses of detrital zircon: a window to understanding the Palaeoproterozoic development of the Tanami Region, Northern Australia. Miner. Deposita, 42, 27–50.
    [Google Scholar]
  29. Daly, S.J., Fanning, C.M. & Fairclough, M.C. (1998) Tectonic evolution and exploration potential of the Gawler Craton, South Australia. AGSO J. Aust. Geol. Geophys., 17, 145–168.
    [Google Scholar]
  30. Deckelman, J.A. (1991) Recognition of a fluvial facies in the Pacoota Sandstone and its implications for petroleum exploration. Bureau Mineral Resources, Aust. Bull., 236, 285–301.
    [Google Scholar]
  31. Deckelman, J.A., Gorter, J.D. & Lindsay, J.F. (1993) Pacoota sandstone of the Amadeus Basin. In: Geological Atlas of the Amadeus Basin (Ed. by J.F.Lindsay ) Australian Government Publishing Service, Canberra.
    [Google Scholar]
  32. DeGraaff‐Surpless, K., Graham, S.A., Wooden, J.L. & McWilliams, M.O. (2002) Detrital zircon provenance analysis of the Great Valley Group, California: evolution of an arc-forearc system. Geol. Soc. Am. Bull., 114, 1564–1580.
    [Google Scholar]
  33. Doutch, H.F. & Nicholas, E. (1978) The Phanerozoic sedimentary basins of Australia and their tectonic implications. Tectonophysics, 48, 365–388.
    [Google Scholar]
  34. Dunlap, W.J., Teyssier, C., Mc Dougall, I. & Baldwin, S. (1995) Thermal and structural evolution of the intracratonic Arltunga Nappe Complex, central Australia. Tectonics, 14, 1182–1204.
    [Google Scholar]
  35. Dunphy, J.M. & McNaughton, N.J. (1998) Geochronology of the Telfer granitoids: zircon and titanite U–Pb SHRIMP data. Geol. Soc. Aust. Abstr., 49, 127.
    [Google Scholar]
  36. Eyre, B. (1994) Early Cambrian alluvial fan‐deltas in the Georgina Basin, Australia. Aust. J. Earth Sci., 41, 27–36.
    [Google Scholar]
  37. Fanning, C.M., Ludwig, K.R., Forbes, B.G. & Preiss, W.V. (1986) Single and multiple grain U–Pb zircon analyses for the early Adelaidean Rook Tuff, Willouran Ranges, South Australia. Geol. Soc. Aust. Abstr., 15, 71–72.
    [Google Scholar]
  38. Fergusson, C.L., Carr, P.F., Fanning, C.M. & Green, T.J. (2001) Proterozoic‐Cambrian detrital zircon and monazite ages from the Anakie Inlier, central Queensland: Grenville and Pacific-Gondwana signatures. Aust. J. Earth Sci., 48, 857–866.
    [Google Scholar]
  39. Forman, D.J. (1971) The Arltunga nappe complex, MacDonnell Ranges, Northern Territory, Australia. J. Geol. Soc. Aust., 18, 173–182.
    [Google Scholar]
  40. Freeman, M.J. (1986) Huckitta, Northern Territory, (Second Edition), 1:250 000 geological map series explanatory notes, SF 53‐11 Northern Territory Geological Survey, Darwin.
  41. Gevers, T.W. (1973) A new name for the ichnogenus Arthropodicus Gevers 1971. J. Paleontol., 47, 1002.
    [Google Scholar]
  42. Gevers, T.W, Frakes, L.A., Edwards, L.N. & Marzolf, J.E. (1971) Trace fossils in the Lower Beacon sediments (Devonian), Darwin Mountains, South Victoria Land, Antarctica. J. Paleontol., 45, 81–94.
    [Google Scholar]
  43. Glass, L.M. & Phillips, D. (2006) The Kalkarindji continental flood basalt province: a new Cambrian large igneous province in Australia with possible links to faunal extinctions. Geology, 34, 461–464.
    [Google Scholar]
  44. Glikson, A.Y., Stewart, A.J., Ballhaus, C.G., Clarke, G.L., Feeken, E.H.J., Leven, J.H., Sheraton, J.W. & Sun, S‐S. (1996) Geology of the western Musgrave Block, central Australia, with particular reference to the mafic‐ultramafic Giles Complex. Aust. Geol. Surv. Org. Bull., 239.
    [Google Scholar]
  45. Goodge, J.W., Myrow, P., Phillips, D., Fanning, C.M. & Williams, I.S. (2004a) Siliciclastic record of rapid denudation in response to convergent margin orogenesis, Ross Orogen, Antarctica. In: Detrital Thermochronology; Provenance Analysis, Exhumation, and Landscape Evolution of Mountain Belts (Ed. by B.Matthias & C.Spiegel ), Geol. Soc. Am. Special Paper378, 105–126.
    [Google Scholar]
  46. Goodge, J.W., Myrow, P., Williams, I.S. & Bowring, S.A. (2002) Age and provenance of the Beardmore Group, Antarctica: constraints on Rodinia supercontinent breakup. J. Geol., 110, 393–406.
    [Google Scholar]
  47. Goodge, J.W., Williams, I.S. & Myrow, P. (2004b) Provenance of Neoproterozoic and lower Palaeozoic siliciclastic rocks of the central Ross Orogen, Antarctica: detrital record of rift-, passive- and active-margin sedimentation. Geol. Soc. Am. Bull., 116, 1253–1279.
    [Google Scholar]
  48. Gorter, J.D. (1984) Source rock potential of the Horn Valley Siltstone, Amadeus Basin. APEA J., 24, 66–90.
    [Google Scholar]
  49. Haines, P.W. (2005) Contrasting Ordovician depositional histories and petroleum systems of the Canning and Amadeus basins: rethinking the Larapinta Seaway concept. Central Australian Basins Symposium (CABS), Abstracts. Northern Territory Geological Survey, Darwin.
    [Google Scholar]
  50. Haines, P.W., Hand, M. & Sandiford, M. (2001) Palaeozoic synorogenic sedimentation in central and northern Australia: a review of distribution and timing with implications for the evolution of intracontinental orogens. Aust. J. Earth Sci., 48, 911–928.
    [Google Scholar]
  51. Hand, M., Mawby, J., Kinny, P. & Foden, J. (1999) U–Pb ages from the Harts Range, central Australia: evidence for early Ordovician extension and constraints on Carboniferous metamorphism. J. Geol. Soc. London, 156, 715–730.
    [Google Scholar]
  52. Hoffman, P.F., Kaufman, A.J., Halverson, G.P. & Schrag, D.P. (1998) A Neoproterozoic snowball Earth. Science, 281, 1342–1346.
    [Google Scholar]
  53. Hutton, L.J., Fanning, C.J. & Withnall, I.J. (1998) The Cape River area; evidence for late Mesoproterozoic and Neoprtoerozoic to Cambrian crust in north Queensland. Geol. Soc. Aust. Abstr., 49, 216.
    [Google Scholar]
  54. Ireland, T.R. (1992) Crustal evolution of New Zealand: evidence from age distributions of detrital zircons in Western Province paragneisses and Torlesse greywacke. Geochim. Cosmochim. Acta., 56, 911–920.
    [Google Scholar]
  55. Ireland, T.R., Flöttmann, T., Fanning, C.M., Gibson, G.M. & Preiss, W.V. (1998) Development of the early Paleozoic Pacific margin of Gondwana from detrital‐zircon ages across the Delamerian orogen. Geology, 26, 243–246.
    [Google Scholar]
  56. Ireland, T.R. & Gibson, G.M. (1998) SHRIMP monazite and zircon geochronology of high‐grade metamorphism in New Zealand. J. Metamorph. Geol., 16, 149–167.
    [Google Scholar]
  57. Jackson, K.S., McKirdy, D.M. & Deckelman, J.A. (1984) Hydrocarbon generation in the Amadeus Basin. APEA J., 24, 42–65.
    [Google Scholar]
  58. Jenkins, R.J.F., McKirdy, D.M., Foster, C.B., O'Leary, T. & Pell, S.D. (1992) The record and stratigraphic implications of organic‐walled microfossils from the Ediacaran (terminal Proterozoic) of South Australia. Geol. Mag., 129, 401–410.
    [Google Scholar]
  59. Jones, B.G. (1991) Fluvial and lacustrine facies in the Middle to Late Devonian Pertnjara Group, Amadeus Basin, Northern Territory, and their relationship to tectonic events and climate. Bureau Mineral Resources, Aust. Bull., 236, 333–348.
    [Google Scholar]
  60. Keble, R.A. & Benson, W.N. (1939) Graptolites of Australia. Memoirs Natl History Museum, Melbourne, 11, 11–99.
    [Google Scholar]
  61. Kendall, B.S. & Creaser, R.A. (2004) Re–Os depositional age of the Neoproterozoic Aralka Formation (Amadeus Basin, Australia) revisited. Geol. Soc. Am. Abstr. Prog., 36, 459.
    [Google Scholar]
  62. Kennard, J.M. & Lindsay, J.F. (1991) Sequence stratigraphy of the latest Proterozoic‐Cambrian Pertaoorta Group, northern Amadeus Basin, central Australia. Bureau Mineral Resources, Aust. Bull., 236, 171–194.
    [Google Scholar]
  63. Korsch, R.J. & Lindsay, J.F.1989Relationships between deformation and basin evolution in the intracratonic Amadeus Basin, central Australia. In: Deformation of Crustal Rocks (Ed. by A.Ord ), Tectonophysics158, 5–22.
    [Google Scholar]
  64. Kruse, P.D., Brakel, A.T., Dunster, J.N. & Duffett, M.L. (2002) Tobermory, Northern Territory, (Second Edition)1:250 000 geological map series explanatory notes, SF 53‐12. Northern Territory Geological Survey, Darwin, Geoscience Australia, Canberra.
    [Google Scholar]
  65. Kruse, P.D. & Mohammed, L.C. (2005) Geology of the southern Georgina Basin, Northern Territory, (First edition), 1:500 000 Geological Special Northern Territory Geological Survey, Darwin.
  66. Lambeck, K. (1983) Structure and evolution of the intracratonic basins of central Australia. Geophys. J. Roy. Astr. Soc., 74, 843–866.
    [Google Scholar]
  67. Lambeck, K. (1984) Structure and evolution of the Amadeus, Officer and Ngalia basins of central Australia. Aust. J. Earth Sci., 31, 25–48.
    [Google Scholar]
  68. Li, Z.X. & Powell, C.McA (2001) An outline of the plaeogeographic evolution of the Australasian region since the beginning of the Neoproterozoic. Earth Sci. Rev., 53, 237–277.
    [Google Scholar]
  69. Li, Z.X., Powell, C.McA, Embleton, B.J.J. & Schmidt, P.W. (1991) New Palaeomagnetic results from the Amadeus Basin and their implications for stratigraphy and tectonics: Australia. Bureau Mineral Resources, Aust. Bull., 236, 349–360.
    [Google Scholar]
  70. Lindsay, J.F. (1987) Sequence stratigraphy and depositional controls in Late Proterozoic‐Early Cambrian sediments of Amadeus Basin, central Australia. AAPG Bull., 71, 1387–1403.
    [Google Scholar]
  71. Lindsay, J.F. (1989) Depositional controls on glacial facies associations in a basinal setting, late Proterozoic, Amadeus Basin, central Australia. Palaeogeograp. Palaeoclimatol. Palaeoecol., 73, 205–232.
    [Google Scholar]
  72. Lindsay, J.F. (1993) Ordovician rocks of the Amadeus Basin. In: Geological Atlas of the Amadeus Basin (Ed. by J.F.Lindsay ) Australian Geological Survey Organisation, Canberra.
    [Google Scholar]
  73. Lindsay, J.F. (1999) Heavitree Quartzite, a Neoproterozoic (ca. 800–760 Ma), high‐energy, tidally influenced ramp association, Amadeus Basin, central Australia. Aust. J. Earth Sci., 46, 127–139.
    [Google Scholar]
  74. Lindsay, J.F. (2002) Supersequences, superbasins, supercontinents–evidence from the Neoproterozoic‐Early Palaeozoic basins of central Australia. Basin Res., 14, 207–223.
    [Google Scholar]
  75. Lindsay, J.F. & Korsch, R.J. (1989) Interplay of tectonics and sea‐level changes in basin evolution: an example from the intracratonic Amadeus Basin, central Australia. Basin Res., 2, 3–25.
    [Google Scholar]
  76. Lindsay, J.F. & Korsch, R.J. (1991) The evolution of the Amadeus Basin, central Australia. Bureau Mineral Resources, Aust. Bull., 236, 7–32.
    [Google Scholar]
  77. Lindsay, J.F., Korsch, R.J. & Wilford, J. (1987) Timing the breakup of a Proterozoic supercontinent: evidence from Australian intracratonic basins. Geology, 15, 1061–1064.
    [Google Scholar]
  78. Maboko, M.A.H., Williams, I.S. & Compston, W. (1991) Zircon U–Pb chronometry of the pressure and temperature history of granulites in the Musgrave Ranges, central Australia. J. Geol., 99, 675–697.
    [Google Scholar]
  79. Mahoney, J.B., Mustard, P.S., Haggart, J.W., Friedman, R.M., Fanning, C.M. & McNicoll, N.J. (1999) Achaean zircons in Cretaceous strata of the western Canadian Cordillera: the “Baja B.C.” hypothesis fails a crucial test. Geology, 27, 195–198.
    [Google Scholar]
  80. Mawby, J., Hand, M. & Foden, J. (1999) Sm–Nd evidence for high‐grade Ordovician metamorphism in the Arunta Block, central Australia. J. Metamorph. Geol., 17, 653–668.
    [Google Scholar]
  81. McCann, T. & Saintot, A. (2003) Tracing tectonic deformation using the sedimentary record: an overview. In: Tracing Tectonic Deformation Using the Sedimentary Record (Ed. by T.McCann & A.Saintot ), Geol. Soc., London, Special Publ., 208, 1–28.
    [Google Scholar]
  82. McIlroy, D., Jenkins, R.J.F. & Walter, M.R. (1997) The nature of the Proterozoic‐Cambrian transition in the northern Amadeus Basin, central Australia. Precamb. Res., 86, 97–113.
    [Google Scholar]
  83. McQueen, H.W.S. & Beaumont, C. (1989) Mechanical models of tilted block basins. In: Origin and Evolution of Sedimentary Basins and their Energy and Resource Potential (Ed. by R.A.Price ), Am. Geophys. Union, Geophys. Monogr., 48, 65–71.
    [Google Scholar]
  84. Nelson, D.R. (1995) Compilation of SHRIMP U–Pb zircon geochronology data, 1994. Western Australia Geological Survey Record, 1995/3.
  85. Nicoll, R.S., Gorter, J. & Owen, M. (1991) Ordovician sediments in the Waterhouse Range Anticline, Amadeus Basin, central Australia: their interpretation and tectonic implications. Bureau Mineral Resources, Aust. Bull., 236, 277–284.
    [Google Scholar]
  86. Oaks, R.Q., Deckelman, J.A., Conrad, K.T., Hamp, L.P., Phillips, J.O. & Stewart, A.J. (1991) Sedimentation and tectonics in the northeastern and central Amadeus Basin, central Australia. Bureau Mineral Resources, Aust. Bull., 236, 73–90.
    [Google Scholar]
  87. Page, R.W., Jackson, J. & Krassay, A.A. (2000) Constraining sequence stratigraphy in north Australian basins: SHRIMP U–Pb geochronology between Mt Isa and McArthur River. Aust. J. Earth Sci., 47, 431–459.
    [Google Scholar]
  88. Pell, S.D., Williams, I.S. & Chivas, A.R. (1997) The use of protolith zircon‐age fingerprints in determining the protosource areas for some Australian dune sands. Sediment. Geol., 109, 223–260.
    [Google Scholar]
  89. Rainbird, R.H., Heaman, L.M. & Young, G.M. (1992) Sampling Laurentia; detrital zircon geochronology offers evidence for an extensive Neoproterozoic river system originating from the Grenville Orogen. Geology, 20, 351–354.
    [Google Scholar]
  90. Rainbird, R.H., McNicoll, V.J., Theriault, R.J., Heaman, L.M., Abbott, J.G., Long, D.G.F. & Thorkelson, D.J. (1997) Pan‐continental river system draining Grenville Orogen recorded by U–Pb and Sm–Nd geochronology of Neoproterozoic quartzarenites and mudrocks, northwestern Canada. J. Geol., 105, 1–17.
    [Google Scholar]
  91. Romine, K.K., Southgate, P.N., Kennard, J.M. & Jackson, M.J. (1994) The Ordovicain to Silurian phase of the Canning Basin, WA: structure and sequence evolution. In: The Sedimentary Basins of Western Australia (Ed. by P.G.Purcell & R.R.Purcell ), P. Petrol. Expl. Soc. Aust. (PESA) Symp., Perth , 851–864.
    [Google Scholar]
  92. Ross, G.M. & Bowring, S.A. (1990) Detrital zircon geochronology of the Windemere Supergroup and the tectonic assembly of the southern Canadian Cordillera. J. Geol., 98, 879–893.
    [Google Scholar]
  93. Rutland, R.W.R. (1976) Orogenic evolution of Australia. Earth Sci. Rev., 12, 161–196.
    [Google Scholar]
  94. Schaefer, B.F. & Burgess, J.M. (2003) Re–Os isotopic age constraints on the Neoproterozoic Amadeus Basin: implications for the ‘Snowball Earth’. J. Geol. Soc., London, 160, 825–828.
    [Google Scholar]
  95. Schwarz, A. & Jagodzinski, L. (2006) Recent geochronological constraints on paragneisses of the Musgrave Province. Australian Earth Sciences Convention 2006, Melbourne, Conference Abstracts, Geological Society of Australia.
  96. Scrimgeour, I. (2003) Developing a revised framework for the Arunta Region. Annual Geoscience Exploration Seminar (AGES) 2003 record of abstracts, Northern Territory Geological Survey Record 2003‐001.
  97. Shaw, R.D. (1987) Basement uplift and basin subsidence in central Australia. Unpublished PhD Thesis, Australian National University.
  98. Shaw, R.D. (1991) The tectonic development of the Amadeus Basin, central Australia. Bureau Mineral Resources, Aust. Bull., 236, 429–461.
    [Google Scholar]
  99. Shaw, R.D., Etheridge, M.A. & Lambeck, K. (1991) Development of the Late Proterozoic to Mid‐Paleozoic, intracratonic Amadeus Basin in central Australia: a key to understanding tectonic forces in plate. Tectonics, 10, 688–721.
    [Google Scholar]
  100. Shaw, R.D., Zieler, P.K., McDougall, I. & Tingate, P. (1992) The Palaeozoic history of an unusual thrust belt in central Australia: a key to understanding tectonic forces in plate. Tectonics, 10, 688–721.
    [Google Scholar]
  101. Shergold, J.H. (1986) Review of the Cambrian and Ordovician palaeontology of the Amadeus Basin, central Australia. Bureau Mineral Resources Rep., 276, 21pp.
    [Google Scholar]
  102. Shergold, J.H. & Druce, E.C. (1980) Upper Proterozoic and Lower Palaeozoic rocks of the Georgina Basin. In: The Geology and Geophysics of Northeastern Australia (Ed. by R.A.Henderson & P.J.Stephenson ), Geol. Soc. Aus., Queensland Div., Brisbane , 149–174.
    [Google Scholar]
  103. Shergold, J.H., Elphinstone, R., Laurie, J.R., Nicoll, R.S., Walter, M.R., Young, G.C. & Zang, W. (1991) Late Proterozoic and early Palaeozoic palaeontology and biostratigraphy of the Amadeus Basin. Bureau Mineral Resources, Aust. Bull., 236, 97–111.
    [Google Scholar]
  104. Sircombe, K.N. & Freeman, M.J. (1999) Provenance of detrital zircons on the western Australian coastline: implications for the geologic history of the Perth Basin and denudation of the Yilgarn Craton. Geology, 27, 879–882.
    [Google Scholar]
  105. Smith, K.G. (1964) Progress report on the geology of the Huckitta 1:250 000 sheet, Northern Territory. Bureau of Mineral Resources, Australia Report, 67.
  106. Southgate, P.N. (1991) A sedimentological model for the Loves Creek Member of the Bitter Springs Formation, northern Amadeus Basin. Bureau Mineral Resources, Geol. Geophys. Bull., 236, 113–126.
    [Google Scholar]
  107. Squire, R.J., Campbell, I.H., Allen, C.M. & Wilson, C.J. (2006) Did the Transgondwanan Supermountain trigger the explosive radiation of animals on Earth?Earth. Planet. Sci. Lett., 250, 116–133.
    [Google Scholar]
  108. Steiger, R.H. & Jäger, J.E. (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet. Sci. Lett., 36, 359–362.
    [Google Scholar]
  109. Swain, G., Hand, M., Barovich, K. & Schwarz, M. (2004) The tectonic setting of the Hiltaba Suite; magmatism and mineralisation linked to the collision of northern Australia and the Mawson continent. Geol. Soc. Aust. Abstr, 73, 189.
    [Google Scholar]
  110. Tingate, P.R. (1991) Apatite fission track analysis of the Pacoota and Stairway Sandstones, Amadeus Basin, central Australia. Bureau Mineral Resources, Aust. Bull., 236, 525–540.
    [Google Scholar]
  111. Towler, B.F. (1986) Reservoir simulation in the Mereenie Field. APEA J., 26, 428–446.
    [Google Scholar]
  112. Veevers, J.J. (1976) Early Phanerozoic events on and alongside the Australasian‐Antarctic Platform. J. Geol. Soc. Aust., 23, 183–206.
    [Google Scholar]
  113. Veevers, J.J.
    , (Ed.). (1984) Phanerozoic Earth History of Australia. Oxford Geological Science Series 2. Clarendon Press, Oxford.
    [Google Scholar]
  114. Veevers, J.J. (2000) Antarctic Beardmore‐Ross and Mirny Provenances saturate Palaeozoic‐Mesozoic east Gondwanaland with 0.6–0.5 Ga zircons. In: Billion Year Earth History of Australia and Neighbours in Gondwanaland (Ed. by J.J.Veevers ) Gemoc Press, Sydney.
    [Google Scholar]
  115. Vermeesch, P. (2004) How many grains are needed for a provenance study?. Earth Planet. Sci. Lett., 224, 441–451.
    [Google Scholar]
  116. Walley, A.M., Cook, P.J., Bradshaw, J., Brakel, A.T., Kennard, J.M., Lindsay, J.F., Nicoll, R.S., Olissof, S., Owen, M., Shergold, J.H., Totterdell, J.M. & Young, G.C. (1991) The Palaeozoic palaeogeography of the Amadeus Basin region. Bureau Mineral Resources, Aust. Bull., 236, 155–169.
    [Google Scholar]
  117. Walter, M.R. (1980) Late Precambrian in relation to stratigraphy of the southwestern Georgina Basin, Australia: Correlation chart andexplanatory notes. Bureau of Mineral Resources, Australia Report, 214, BMR Microform MF 92.
  118. Walter, M.R. & Veevers, J.J. (1997) Australian Neoproterozoic palaeogeography, tectonics and supercontinental connections. AGSO J. Aust. Geol. Geophys., 17, 73–92.
    [Google Scholar]
  119. Walter, M.R. & Veevers, J.J. (2000) Neoproterozoic Australia. In: Billion Year Earth History of Australia and Neighbours in Gondwanaland (Ed. by J.J.Veevers ), pp. 131–153. Gemoc Press, Sydney.
    [Google Scholar]
  120. Walter, M.R., Veevers, J.J., Calver, C.R. & Grey, K. (1995) Neoproterozoic stratigraphy of the Centralian Superbasin, Australia. Precamb. Res., 73, 173–195.
    [Google Scholar]
  121. Webby, B.D. (1978) The history of the continental platform shelf margin of Australia. J. Geol. Soc. Aust., 25, 41–63.
    [Google Scholar]
  122. Wells, A.T., Forman, D.J., Ranford, L.C. & Cook, P.J. (1970) Geology of the Amadeus Basin, central Australia. Bureau Mineral Resources, Aust. Bull., 100, 222pp.
    [Google Scholar]
  123. Williams, I.S. (2001) Response of detrital zircon and monazite, and their U–Pb isotopic systems, to regional metamorphism and host‐rock partial melting, Cooma Complex, southeastern Australia. Aust. J. Earth Sci., 48, 557–580.
    [Google Scholar]
  124. Williams, I.S. & Chappell, B.W. (1998) Crustal evolution in southeastern Australia: a zircon viewpoint. In: The Bruce Chappell Symposium. Granites, island arcs, the mantle and ore deposits, Conference Abstracts. Australian Geological Survey Organisation Record, 1998/33, 44.
  125. Williams, I.S. & Claesson, S. (1987) Isotopic evidence for the provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides. Ion microprobe zircon U–Th–Pb. Contrib. Mineral. Petrol., 97, 205–217.
    [Google Scholar]
  126. Williams, I.S., Goodge, J., Myrow, P., Burke, K. & Kraus, J. (2002) Large scale sediment dispersal associated with the late Neoproterozoic assembly of Gondwana. Geol. Soc. Aust., Abstr., 67, 238.
    [Google Scholar]
  127. Wingate, M.T.D., Campbell, I., Compston, W. & Gibson, G.M. (1998) Ion microprobe U–Pb ages for Neoproterozoic basaltic magmatism in south‐central Australia and implications for the breakup of Rodinia. Precamb. Res., 87, 135–159.
    [Google Scholar]
  128. Wingate, M.T.D. & Giddings, J.W. (2000) Age and palaeomagnetism of the Mundine Well dyke swarm, Western Australia: implications for an Australia–Laurentia connection at 755 Ma. Precamb. Res., 100, 355–357.
    [Google Scholar]
  129. Wyborn, L., Hazell, M., Page, R., Idnurm, M. & Sun, S. (1998) A newly discovered major Proterozoic granite‐alteration system in the Mount Webb region, central Australia, and implications for Cu‐Au mineralisation: AGSO Res. Newsletter, 28, 1–6.
    [Google Scholar]
  130. Young, G.C. (1996) Devonian (Chart 4). In: An Australian Phanerozoic Timescale (Ed. by G.C.Young & J.R.Laurie ), pp 96–109. Oxford University Press, Melbourne.
    [Google Scholar]
  131. Zhao, J.X. & McCulloch, M.T. (1993) Sm–Nd mineral isochron ages of Late Proterozoic dyke swarms in Australia: evidence for two distinctive events of mafic magmatism and extension. Chem. Geol., 109, 341–354.
    [Google Scholar]
  132. Zhao, J.X., McCulloch, M.T. & Bennett, V.C. (1992) Sm–Nd and U–Pb zircon isotopic constraints on the provenance of sediments from the Amadeus Basin, central Australia: evidence for REE fractionation. Geochim. Cosmochim. Acta, 56, 921–940.
    [Google Scholar]
  133. Zhao, J.X., McCulloch, M.T. & Korsch, R.J. (1994) Characterisation of a plume‐related ∼800 Ma magmatic event and its implications for basin formation in central‐southern Australia. Earth Planet. Sci. Lett., 121, 349–367.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2007.00326.x
Loading
/content/journals/10.1111/j.1365-2117.2007.00326.x
Loading

Data & Media loading...

Supplements

SHRIMP U‐Th‐Pb isotopic analyses of zircon from the Heavitree Quartzite, Amadeus Basin
 SHRIMP U‐Th‐Pb isotopic analyses of zircon from the Limbla Member, Amadeus Basin
 SHRIMP U‐Th‐Pb isotopic analyses of zircon from the Cyclops Member, Amadeus Basin
 SHRIMP U‐Th‐Pb isotopic analyses of zircon from the Grant Bluff Formation, Georgina Basin
 SHRIMP U‐Th‐Pb isotopic analyses of zircon from the Arumbera Sandstone (IV), Amadeus Basin
 SHRIMP U‐Th‐Pb isotopic analyses of zircon from the Mount Baldwin Formation, Georgina Basin
 SHRIMP U‐Th‐Pb isotopic analyses of zircon from the Goyder Formation, Amadeus Basin
 SHRIMP U‐Th‐Pb isotopic analyses of zircon from the Arrinthrunga Formation, Georgina Basin
 SHRIMP U‐Th‐Pb isotopic analyses of zircon from the Pacoota Sandstone, Amadeus Basin
 SHRIMP U‐Th‐Pb isotopic analyses of zircon from the Tomahawk Formation, Georgina Basin
 SHRIMP U‐Th‐Pb isotopic analyses of zircon from the Stairway Sandstone, Amadeus Basin
 SHRIMP U‐Th‐Pb isotopic analyses of zircon from the Mereenie Sandstone, Amadeus Basin
 SHRIMP U‐Th‐Pb isotopic analyses of zircon from the Dulcie Sandstone, Georgina Basin

Supporting info item

Supporting info item

Supporting info item

Supporting info item

Supporting info item

Supporting info item

Supporting info item

Supporting info item

Supporting info item

Supporting info item

Supporting info item

Supporting info item

Supporting info item

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error