1887
Volume 26, Issue 2
  • E-ISSN: 1365-2117

Abstract

Abstract

The Upper Ordovician in the Tarim Basin contains 5000–7000 m of siliciclastic and calciclastic deep‐water, gravity‐flow deposits. Their depositional architecture and palaeogeographical setting are documented in this investigation based on an integrated analysis of seismic, borehole and outcrop data. Six gravity‐flow depositional–palaeogeomorphological elements have been identified as follows: submarine canyon or deeply incised channels, broad and shallow erosional channels, erosional–depositional channel and levee–overbank complexes, frontal splays‐lobes and nonchannelized sheets, calciclastic lower slope fans and channel lobes or sheets, and debris‐flow complexes. Gravity‐flow deposits of the Sangtamu and Tierekeawati formations comprise a regional transgressive‐regressive megacycle, which can be further classified into six sequences bounded by unconformities and their correlative conformities. A series of incised valleys or canyons and erosional–depositional channels are identifiable along the major sequence boundaries which might have been formed as the result of global sea‐level falls. The depositional architecture of sequences varies from the upper slope to abyssal basin plain. Palaeogeographical patterns and distribution of the gravity‐flow deposits in the basin can be related to the change in tectonic setting from a passive continental margin in the Cambrian and Early to Middle Ordovician to a retroarc foreland setting in the Late Ordovician. More than 3000 m of siliciclastic submarine‐fan deposits accumulated in south‐eastern Tangguzibasi and north‐eastern Manjiaer depressions. Sedimentary units thin onto intrabasinal palaeotopographical highs of forebulge origin and thicken into backbulge depocentres. Sediments were sourced predominantly from arc terranes in the south‐east and the north‐east. Slide and mass‐transport complexes and a series of debris‐flow and turbidite deposits developed along the toes of unstable slopes on the margins of the deep‐water basins. Turbidite sandstones of channel‐fill and frontal‐splay origin and turbidite lobes comprise potential stratigraphic hydrocarbon reservoirs in the basin.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12028
2013-07-03
2024-04-26
Loading full text...

Full text loading...

References

  1. Bao, Z.D., Zhu, J.Q. & Wang, M.S. (1998) Isotope and trace element evolution: responding to sea level fluctuation – an example of Ordovician in middle Tarim Basin. Acta Sedimentol. Sinica, 16, 32–36 (in Chinese with English abstract).
    [Google Scholar]
  2. Bouma, A.H. (1962) Sedimentology of Some Flysch Deposits: A Graphic Approach To Facies Interpretation. Elsevier, Amsterdam, 168 pp.
    [Google Scholar]
  3. Carroll, A.R., Graham, S.A. & Smith, M. (2010) Walled sedimentary basins of China. Basin Res., 22, 17–32. doi:10.1111/j.1365‐2117.2009.00458.x.
    [Google Scholar]
  4. Charvent, J., Shu, L.S., Laurent‐Charvet, S., Wang, B., Faure, M., Cluze, D., Chen, Y. & Jong, K.D. (2011) Palaeozoic tectonic evolution of the Tianshan belt, NW China. Sci. China, 54, 166–184.
    [Google Scholar]
  5. Chen, Z.F., Chen, S.D. & Liang, Y.H. (1997) Extension and Compression Tectonics and Mineralization in Xinjiang. Xinjiang Scientific and Technological and Clinical Press, Urumqi, China, 300 pp (in Chinese with English abstract).
    [Google Scholar]
  6. Chen, X., Rong, J.Y., Zhang, Y.D. & Fan, J.X. (2000) A commentary on Ordovician chronostratigraphy. J. Stratigr., 24, 19–26 (in Chinese with English abstract).
    [Google Scholar]
  7. Chen, M., Xu, X.S., Wan, F., Lou, X.Y., Wang, Z.J. & Fu, H. (2004) Study on outcrop sequence stratigraphy of the lower‐middle Ordovician Strata in keping. Tarim Basin.. Acta Sedimentol. Sinica, 22, 110–116 (in Chinese with English abstract).
    [Google Scholar]
  8. Cheng, R.H., Wang, P.J., Sun, X.M. & Bai, Y.F. (2006) Sequence stratigraphy and sea level changes of Ordovician in Kuruktag, Xinjiang. Geotectonicaet Merallogenia, 30, 283–293 (in Chinese with English abstract).
    [Google Scholar]
  9. Clark, J.D. & Pickering, K.T. (1996) Submarine Channels: Processes and Architecture. Vallis Press, London, 231 pp.
    [Google Scholar]
  10. Decelles, P.G. & Giles, K.A. (1996) Foreland basin systems. Basin Res., 8, 105–123.
    [Google Scholar]
  11. Dicelma, C. (2011) Sedimentology, architecture, and depositional evolution of a coarse‐grained submarine canyon fill from the Gelasian (early Pleistocene) of the Peri‐Adriatic basin, Offida, central Italy. Sed. Geol., 238, 233–253.
    [Google Scholar]
  12. Dickinson, W.R. & Suczek, C.A. (1979) Plate tectonics and sandstone composition. AAPG Bull., 63, 2164–2182.
    [Google Scholar]
  13. Du, X.D., Wang, P.J. & KUANG, L.C. (1997) The reconstruction and origin of sea level changes of Sinian period to Dovinian period in Tarim Basin. Acta Sedimentol. Sinica, 15, 14–17 (in Chinese with English abstract).
    [Google Scholar]
  14. Feng, Z.Z., Bao, Z.D., Wu, M.B., Jin, Z.K., Shi, X.Z. & Luo, A.R. (2007) Lithofacies palaeogeography of the Ordoviacian in Tarim area. J. Palaeogeogr., 9, 447–460 (in Chinese with English abstract).
    [Google Scholar]
  15. Gao, J., Long, L.L., Qian, Q., Huang, D.Z., Su, W. & Klemd, R. (2006) South Tianshan: a Late Paleozoic or a Triassic orogen?Acta Petrol. Sinica, 22, 1049–1061 (in Chinese with English abstract).
    [Google Scholar]
  16. Han, W., Ren, Z., Kong, X.W. & He, B. (2008) The new understanding obtained from the study of the sediment source in Southeastern of the Kongque River slopes in the Middle‐Late Ordovician. Northwestern Geol.,41, 87–92 (in Chinese with English abstract)
    [Google Scholar]
  17. Haq, B.U. & Schutter, S.R. (2008) A chronology of Paleozoic sea‐level changes. Science, 322, 64–68.
    [Google Scholar]
  18. He, D.F., Zhou, X.Y., Zhang, C.J. & Yang, X.F. (2007) The prototype and evolution of Tarim basin in Ordovician. Bull. Chin. Sci. , 52 (Suppl.), 126–135 (in Chinese with English abstract).
    [Google Scholar]
  19. Huang, J.Q., Ren, J.S. & Jiang, C.F. (1990) Geotectonic Evolution of China, Science Press, Beijing, 124 pp. (in Chinese with English abstract).
    [Google Scholar]
  20. Hubbard, S.M., de Ruig, M.J. & Graham, S.A. (2009) Confined channel‐levee complex development in an elongate depo‐center: deep water Tertiary strata of the Austrian Molasse basin. Mar. Petrol. Geol., 26, 85–112.
    [Google Scholar]
  21. Jia, C.Z. (1997) Tectonic Characteristics and Petroleum in Tarim Basin of China. Petroleum Industry Press, Beijing (in Chinese).
    [Google Scholar]
  22. Jia, C.Z., Wei, G., Wang, L., Jia, D. & Guo, S. (1997) Tectonic Characteristics and Petroleum in Tarim Basin of China. Petroleum Industry Press, Beijing,p. 483 (in Chinese)
    [Google Scholar]
  23. Kang, Y.Z. & Kang, Z.H. (1994) Tectonic evolution and hydrocarbon of Tarim Basin. Acta Geoscient. Sinica, 4, 180–191 (in Chinese with English abstract).
    [Google Scholar]
  24. Kessler, L.G. & Bedard, J.H. (2000) Epiclastic volcanic debrites‐evidence of flow transformations between avalanche and debris‐flow processes, Middle Ordovician, Baie Verte Peninsula, Newfoundland. Can. Precambrian Res., 101, 135–161.
    [Google Scholar]
  25. Li, Y.P. & Wang, Z.Y. (1997) Gravity‐flow deposition of Ordovician carbonate in Tazhong area. Xinjiang Petrol. Geol., 18, 231–233 (in Chinese with English abstract).
    [Google Scholar]
  26. Li, D.L. & Zhang, D.Q. (2001) The characteristics and evolution of Sinian‐Ordovician continental rift in the Northern trough of Tarim Basin. J. Changchun U Sci. Technol., 31, 136–141 (in Chinese with English abstract).
    [Google Scholar]
  27. Li, D.S., Liang, D.G., Jia, C.Z., Wang, G., Wu, Q.Z. & He, D.F. (1996) Hydrocarbon accumulation in the Tarim Basin, China. Am. Assoc. Petrol. Geol. Bull., 80, 1587–1603.
    [Google Scholar]
  28. Li, B.L., Guan, S.W., Li, C.X., Wu, G.H., Yang, H.J., Han, J.F., Luo, C.S. & Miao, J.J. (2009) Paleotectonic evolution and deformation features of the lower uplift in the central Tarim Basin. Geol. Rev., 55, 521–530 (in Chinese with English abstract).
    [Google Scholar]
  29. Lin, C.S., Yang, Q., Li, S.T. & Li, Z. (1991) Sedimentary characters of the Early Paleozoic deep water gravity flow systems and basin filling style in the helan aulacogen. Northwest China. Geosci., 5, 252–263 (in Chinese with English abstract).
    [Google Scholar]
  30. Lin, C.S., Liu, J.Y., Cai, S.X., Zhang, Y.M., Lu, M. & Li, J. (2001) Depositional architecture and developing settings of large scale incised valley and submarine gravity flow systems in the Yinggehai and Qiongdongnan basins, South China Sea. Chin. Sci. Bull., 46, 690–693.
    [Google Scholar]
  31. Lin, C.S., Zhang, Y.M. & Li, S.T. (2002) Quantitatively modeling of multiple stretching of lithosphere and deep thermal history of some tertiary Rift Basins in East China. Acta Geol. Sinica, 76, 324–330.
    [Google Scholar]
  32. Lin, C.S., Yang, H.J., Liu, J.Y., Cai, Z.Z., Peng, L., Yang, X.F. & Yang, Y.H. (2008) Early Paleozoic paleo‐uplift geomorphology of Tarim Basin and development and distribution of tectonic palaeogeography and formation trap. Oil Gas Geol., 29, 189–197 (in Chinese with English abstract).
    [Google Scholar]
  33. Lin, C.S., Yang, H.J., Liu, J.Y., Peng, L., Cai, Z.Z., Yang, X.F. & Yang, Y.H. (2009) Paleostructural geomorphology of the Paleozoic central uplift belt and its constraint on the development of depositional facies in the Tarim Basin. Sci. China, Ser. D Earth Sci., 52, 823–834.
    [Google Scholar]
  34. Lin, C.S., Liu, J.Y. & Hu, B. (2010) Computer simulation on the formation of depositional sequences in tectonic active basin: case study on rift and foreland basins. Acta Sedimentol. Sinica, 28, 868–874 (in Chinese with English abstract).
    [Google Scholar]
  35. Lin, C.S., Yang, H.J., Liu, J.Y., Rui, Z.F., Cai, Z.Z., Li, S.T. & Yu, B.S. (2012a) Sequence architecture and depositional evolution of the Ordovician carbonate platform margins in the Tarim Basin and its response to tectonism and sea‐level change. Basin Res., 24(5, 559–582.
    [Google Scholar]
  36. Lin, C.S., Yang, H.J., Liu, J.Y., Rui, Z.F., Cai, Z.Z. & Zhu, Y.F. (2012b) Distribution and erosion of the Paleozoic tectonic unconformities in the Tarim Basin, Northwest China: significance for the evolution of paleo‐uplifts and tectonic geography during deformation. J. Asian Earth Sci., 46, 1–19.
    [Google Scholar]
  37. Liu, Z.B., Yu, B.S., Chen, X.L., Gao, Z.Q., Chao, Q.G. & Li, T.Y. (2003) Sequence stratigraphy and sedimentary characters of submarine fan of middle‐upper Ordovician in Tadong area, the Tarim Basin. Geoscience, 17, 408–414 (in Chinese with English abstract).
    [Google Scholar]
  38. Liu, Y., Zhao, X.K., Li, K., Su, Y.H., He, Y.Y. & Wang, Y.T. (2009) Relations between Paleozoic main unconformities and hydrocarbon accumulation in Tazhong Uplift. Xinjiang Petrol. Geol., 30, 683–685 (in Chinese with English abstract).
    [Google Scholar]
  39. Liu, J.Y., Lin, C.S., Cai, Z.Z., Zhu, Y.F., Yang, Y.H., Peng, L., Si, B.L., Huang, Z., Li, H.P., Xu, Y.C. & Su, Z.Z. (2010) Palaeogeomorphology and its control on the development of sequence stratigraphy and depositional systems of the Early Silurian in the Tarim Basin. Petrol. Sci., 7, 311–322.
    [Google Scholar]
  40. Lou, X.Y. & Xu, X.S. (2004) Tectonic‐sedimentary responses of the Tarim basin, Xinjiang during the late early Palaeozoic. Sed. Geol. Tethyan Geol., 24, 72–79 (in Chinese with English abstract).
    [Google Scholar]
  41. Lowe, D.R. (1982) Sediment gravity flows II: depositional models with special reference to the deposits of high density turbidite currents. J. Sed. Petrol., 52, 279–298.
    [Google Scholar]
  42. Luo, J.H., Zhou, X.Y. & Qiu, B. (2005) Petroleum geology and geological evolution of the Tarim‐Karakum and adjacent areas. Geol. Rev., 51, 409–415.
    [Google Scholar]
  43. Marsaglia, K.M., Martin, C.E., Kautz, C.Q., Shapiro, S.A. & Carter, L. (2011) Linking a late Miocene‐Pliocene hiatus in the deep‐sea Bounty Fan off South Island, New Zealand, to onshore tectonism and lacustrine sediment storage. Geosphere, 7, 305–312.
    [Google Scholar]
  44. Mattern, F. & Schneider, W. (2000) Suturing of the proto‐ and paleo‐tethys oceans in the western Kunlun (Xinjiang, China). J. Asian Earth Sci., 18, 637–650.
    [Google Scholar]
  45. Mayall, M., Lonergan, L., Bowman, A., James, S., Mills, K., Primmer, T., Pope, D., Rodgers, L. & Skeene, R. (2010) The response of turbidite slope channels to growth‐induced seabed topography. Am. Assoc. Petrol. Geol. Bull., 94, 1011–1030.
    [Google Scholar]
  46. Middleton, G.V. & Hampton, M. (1976) Subaqueous sediment transport and deposition by sediment gravity flows. In: Marine Sediment Transport and Environment Management (Ed. by D.J.Stanley & D.J.P.Swift ), pp. 197–218. Wiley (Inter‐science), New York.
    [Google Scholar]
  47. Mutti, E. & Normark, W.R. (1991) An integrated approach to the study of turbidite systems. In: Seismic Facies and Sedimentary Processes of Submarine Fans and Turbidite Systems (Ed. by P.Weimer & M.H.Link ), pp. 75–106. Springer–Verlag, New York.
    [Google Scholar]
  48. Mutti, E. & Ricci, L.F. (1972) Turbidites of the northern Apennines: introduction to facies analysis (English translation by Nilsen T.H., 1978). Int. Geol. Rev., 20, 25–166.
    [Google Scholar]
  49. Mutti, E., Tinterri, R., Remacha, E., Mavilla, N., Angella, S. & Fava, L. (1999) An introduction to the analysis of ancient turbidite basins from an outcrop perspective. AAPG Contin. Ed. Course Note Ser., 39, 98.
    [Google Scholar]
  50. Nakajima, T., Peakall, J., McCaffrey, W.D., Paton, D.A. & Thompson, P.J.P. (2009) Outer‐bank bars: a new intra‐channel architectural element within sinuous submarine slope channels. J. Sed. Res., 79, 872–886.
    [Google Scholar]
  51. Navarre, J.C., Claude, D., Liberelle, E., Safa, P., Vallon, G. & Keskes, N. (2002) Deepwater turbidite system analysis, West Africa: sedimentary model and implications for reservoir model construction. Soc. Expl. Geophys., 21, 1132–1139.
    [Google Scholar]
  52. Normark, W.R. (1978) Fan valleys, channels and depositional lobes on modern submarine fans: characters for recognition of sandy turbidite environments. Am. Assoc. Petrol. Geol. Bull., 62, 912–931.
    [Google Scholar]
  53. Payros, A. & Pujalte, V. (2008) Calciclastic submarine fans: an integrated overview. Earth‐Sci. Rev., 86, 203–246.
    [Google Scholar]
  54. Peng, H.C., Zhang, Z.S. & Li, S.P. (2006) Type of Paleozoic basin and feature of plate movement in Tarim basin. Oil Geophys. Prospect., 41, 711–728 (in Chinese with English abstract).
    [Google Scholar]
  55. Posamentier, H.W. & Kolla, V. (2003) Seismic geomorphology and stratigraphy of depositional elements in deep‐water settings. J. Sed. Res., 73, 367–388.
    [Google Scholar]
  56. Posamentier, H.W., Erskine, R.D. & Mitchum, R.M. (1991) Submarine fan deposition in a sequence stratigraphic framework. In: Seismic Facies and Sedimentary Processes of Submarine Fans and Turbidite Systems (Ed. by P.Weimer & M.H.Link ), pp. 127–136. Springer‐Verlag, New York.
    [Google Scholar]
  57. Posamentier, H.W., Davies, R., Wood, L.J. & Cartwright, J. (2007) Quantitative seismic geomorphology of a quaternary leveed‐channel system, seismic geomorphology—an overview. In: Seismic Geomorphology: Application to Hydrocarbon Exploration and Production (Ed. by R.Davies , H.W.Posamentier , L.J.Wood & J.Cartwright ), Geol. Soc. London and SEPM Spec. Publ., 277, 1–20.
    [Google Scholar]
  58. Richards, M., Bowman, M. & Reading, H.G. (1998) Submarine‐fan systems I: characterization and stratigraphic prediction. Mar. Petrol. Geol., 15, 687–717.
    [Google Scholar]
  59. Shanmugam, G. (2006) Deep‐water Processes and Facies Models: Implications for Sandstone Petroleum Reservoirs. Elsevier, Amsterdam, 476 pp.
    [Google Scholar]
  60. Shanmugam, G., Shrivastava, S.K. & Das, B. (2009) Sandy debrites and tidalites of Pliocene reservoir sands in upper‐slope canyon environments, offshore Krishna‐Godavari Basin (India). J. Sed. Res., 79, 736–756.
    [Google Scholar]
  61. Shanmugam, G. (2007) The obsolescence of deep‐water sequence stratigraphy in petroleum geology. Indian J. Petrol. Geol., 16, 1–45.
    [Google Scholar]
  62. Stow, D.A.V. (1985) Deep‐sea clastics: Where are we and where are we going? In: Sedimentology: Recent Developments and Applied Aspects (Ed. by P.J.Benchley & B.P.J.Williams ), Geol. Soc. London Spec. Publ., 17, 67–93.
    [Google Scholar]
  63. Vail, P.R., Audemard, F., Bowman, S.A., Eisner, P.N. & Perez‐Cruz, C. (1991) The stratigraphic signatures of tectonics, eustasy and sedimentology – an overview. In: Cycles and Events in Stratigraphy (Ed. by G.Einsele , W.Ricken & A.Seilacher ), pp. 617–659. Springer‐Verlag, Berlin.
    [Google Scholar]
  64. Walker, R.G. (1978) Deep‐water sandstone facies and ancient submarine fans: models for exploration and stratigraphic traps. Am. Assoc. Petrol. Geol. Bull., 62, 932–966.
    [Google Scholar]
  65. Wan, L., Hou, M.C., Fu, H., Li, X.H., Zhao, Z.C. & Xian, Q. (2007) Sedimentary environment analysis of Sangtamu Formation of Upper Ordovician in the south of Tarim River, Xinjiang, China. J. Chengdu Univ. Tech (Sci & Tech. Ed.) , 34, 128–134 (in Chinese with English abstract).
    [Google Scholar]
  66. Wang, Z.H. (2004) Tectonic evolution of the western Kunlun orogenic belt, western China. J. Asian Earth Sci., 24, 153–161.
    [Google Scholar]
  67. Wang, J.Z., Huang, Z.L., Zhong, R., Hao, Y.X. & Wang, J.M. (1989) Depositional facies and oil‐bearing property of the Sinian to Ordovician, Kuluketage area, northern margin of the Tarim Basin. Research Report: Qiang Dian Gui Petroleum Research Institute, pp. 124–213 (in Chinese).
  68. Wang, M.S., Zhu, J.Q. & Chen, D.Z. (2002) The feature of carbon, strontium isotope and respond to sea‐level change in carbonate rock in Ordovician in Tarim Basin. Sci. China (Ser. D), 32, 36–42.
    [Google Scholar]
  69. Wang, S.Y., Huang, J.W. & Jiang, X.Q. (2006) The sedimentary and paleogeographic characteristics of the upper Ordovician in the Tarim Basin. Petrol. Geol. Exp., 28, 236–242 (in Chinese with English abstract).
    [Google Scholar]
  70. Wang, T.G., Dai, S.F., Li, M.J., Zhang, W.B., Qiu, N.S. & Wang, G.L. (2010) Stratigraphic thermohistory and its implications for regional geoevolution in the Tarim Basin, NW China. Sci. in China (Ser. D), 53, 1495–1505.
    [Google Scholar]
  71. Wei, G.Q., Jia, C.Z. & Li, B.L. (2002) Periphera foreland basin of Silurian to Devonian in the South of Tarim Basin. Chin.Sci. Bull., 47 (Suppl.), 44–48 (in Chinese with English abstract).
    [Google Scholar]
  72. Xiao, W.J., Zhang, L.C. & Qin, K.Z. (2004) Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China): implications for the continental growth of Central Asia. J. Sci., 304, 370–395.
    [Google Scholar]
  73. Xiao, W.J., Windley, B.F., Liu, D.Y., Jian, P., Liu, C.Z., Yuan, C. & Sun, M. (2005) Accretionary tectonics of the Western Kunlun Orogen, China: a Paleozoic‐early Mesozoic, long‐lived active continental margin with implications for the growth of southern Eurasia. J. Geol., 113, 687–705.
    [Google Scholar]
  74. Xu, X.S., Wang, Z.J., Wan, F. & Fu, H. (2005) Tectonic paleogeographic evolution and source rocks of the Early Paleozoic in the Tarim Basin. Earth Sci. Frontiers, 12, 49–57 (in Chinese with English abstract).
    [Google Scholar]
  75. Yang, K.M. (1994) Types, development and evolution of Paleozoic basins in Tarim Plate. Acta Petrol. Sinica, 15, 8–18 (in Chinese with English abstract).
    [Google Scholar]
  76. Yang, H.B., Gao, P., Li, B. & Zhang, Q.J. (2005) The geological characteristics of the Sinian Dalubayi ophiolite in the west Tianshan. Xingjiang. Xinjiang Geol., 23, 123–126 (in Chinese with English abstract).
    [Google Scholar]
  77. Yu, B.S., Chen, J.Q. & Lin, C.S. (2005) Sequence stratigraphic framework and its control on development of Ordovician varbonate reservoir in Tarin Basin. Oil Gas Geol., 26, 305–316 (in Chinese with English abstract).
    [Google Scholar]
  78. Zhang, G.Y. & Song, J.G. (1998) Control of basin reworking on hydrocarbon accumulation and preservation in the Tarim Cratonic Basin. Northwest China. Geol. Rev., 44, 511–521 (in Chinese with English abstract).
    [Google Scholar]
  79. Zhang, Y.W., Jin, Z.Z., Liu, G.C. & Li, J.C. (2000) Study on the formation of unconformities and the amount Of eroded sedimentation in Tarim Basin. Earth Sci. Frontiers (China Univ. Geosci., Beijing), 7, 449–457 (in Chinese with English abstract).
    [Google Scholar]
  80. Zhang, C.L., Yang, D.S., Wang, H.Y., Dong, Y.G. & Ye, H.M. (2010) Neoproterozoic mafic dykes and basalts in the southern margin of Tarim, Northwest China: age, geochemistry and geodynamic implications. Acta Geol. Sinica, 84, 549–562 (in Chinese with English abstract).
    [Google Scholar]
  81. Zhao, Z.J., Zhao, Z.X. & Huan, G.Z. (2006) Ordovician conodont zones and sedimentary sequences of the Tarim Basin, Xinjiang, NW China. J. Stratigr., 30, 193–203 (in Chinese with English abstract).
    [Google Scholar]
  82. Zhao, Z.J., Wu, X.N., Pan, W.Q., Zhang, X.Y., Zhang, L.J., Ma, P.L. & Wang, Z.Y. (2009) Sequence lithofacies paleogeography of Ordovician in Tarim Basin. Acta Sedimentol. Sinica, 27, 940–955 (in Chinese with English abstract).
    [Google Scholar]
  83. Zhong, G.F., Liu, X.F., Deng, C.N. & Wan, L.G. (2006) Middle‐upper Ordovician seismic sequence and submarine fan deposits in West Tadong Uplift, Tarim Basin. Northwest China. Earth Sci. J. China Univ. Geosci., 31, 366–371 (in Chinese with English abstract).
    [Google Scholar]
  84. Zhu, R.K., Luo, P. & Luo, Z. (2002) Lithofacies paleography of the Late Devonian and Carboniferous in Tarim basin. J. Palaeogeogr., 4, 13–24 (in Chinese with English abstract).
    [Google Scholar]
  85. Zhu, Z.X., Li, J.Y., Dong, L.H., Zhang, X.F., Wang, K.Z., Wang, H.X. & Zhao, T.Y. (2009) Tectonic framework and tectonic evolution of the southern Tianshan, Xinjiang, China. Geol. Bull. China, 28, 1863–1870 (in Chinese with English abstract).
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12028
Loading
/content/journals/10.1111/bre.12028
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error