1887
Volume 27, Issue 2
  • E-ISSN: 1365-2117

Abstract

Abstract

Megafan conglomerates of foreland basins chronicle the combined effect of palaeoclimate conditions, tectonic processes and the flux and granulometric composition of the supplied sediment. However, the architecture of these deposits is seldom uniquely compatible with a single driving force. This problem is illustrated here with a field‐based analysis of the . 30–20 Ma‐old Napf deposits in the north Alpine foreland basin which are coeval with a substantial global warming of . 6°C during the Late Oligocene. The observed larger grain sizes and a change in fluvial style from wandering to braided could be explained climatically by a shift to drier conditions with sparse vegetation, but would have resulted in less than 400 m of additional accommodation space during the 1 Ma duration of change. Accordingly, a climate scenario alone is also not compatible with rapid sediment accumulation rates of >1000 m Ma−1 recorded at Napf, or with a lack of any remarkable shifts in the Froude number, which would be expected if water discharge patterns changed substantially. Alternatively, flexural downwarping in response to a tectonic pulse could account for the increase in grain size and the change in fluvial style from wandering (more distal facies) to braided (proximal equivalent). However, a third driving force is required to explain the contemporaneous backstepping of the distal gravel front and progradation of the proximal braided facies. We suggest that the erosional hinterland steepened in response to an inferred tectonic pulse, resulting in a more widespread exposure of lithologies with higher erosional resistance, as inferred from an increasing contribution of crystalline constituents in the clast suites. Such a change would result in a larger and a higher clast size variability in the supplied sediment, which in turn would contribute to the observed change from wandering to braided and the related shift in depositional systems. This study highlights the importance of tectonic processes and the role of changing surface lithologies in the source area for explaining variations in megafan construction even in the light of substantial palaeoclimate shift.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12070
2014-05-24
2024-04-26
Loading full text...

Full text loading...

References

  1. Allen, P.A. (1997) Earth Surface Processes. John Wiley & Sons, Oxford, 416 pp.
    [Google Scholar]
  2. Allen, P.A. & Densmore, A.L. (2000) Sediment flux from an uplifting block. Basin Res., 12, 367–380.
    [Google Scholar]
  3. Allen, P.A. & Heller, P.L. (2012) Dispersal and preservation of tectonically generated alluvial gravels in sedimentary basins. In: Tectonics of Sedimentary Basins: Recent Advances (Ed. by C.Busby & A.Azor ), pp. 111–130. Wiley‐Blackwell, Oxford, 647 pp.
    [Google Scholar]
  4. Allen, P.A., Armitage, J.J., Carter, A., Duller, R.A., Michael, N.A., Sincliar, H.D., Whitchurch, A.L. & Whittaker, A.C. (2013) The Q s problem: sediment volumetric balance of proximal foreland basin systems. Sedimentology, 60, 102–130.
    [Google Scholar]
  5. Anderson, T. & Arthur, M. (1983) Stable isotopes of oxygen and carbon and their application to sedimentologic and palaeoenvironmental problems. In: Stable Isotopes in Sedimentary Geology (Ed. by Arthur, M.A. , Anderson, T.F. , Kaplan, I.R. , Veizer, J. & Land, L.S. ) SEPM short courses, 10, 151 pp.
    [Google Scholar]
  6. Armitage, J.J., Duller, R.A., Whittaker, A.C. & Allen, P.A. (2011) Transformation of tectonic and climatic signals from source to sedimentary archive. Nat. Geosci., 4, 231–235.
    [Google Scholar]
  7. Attal, M. & Lavé, J. (2009) Pebble abrasion during fluvial transport: experimental results and implications for the evolution of the sediment load along rivers. J. Geophys. Res., 114, F04023.
    [Google Scholar]
  8. Bekaddour, T., Schlunegger, F., Attal, M. & Norton, K.P. (2013) Lateral sediment sources and knickzones as controls on spatio‐temporal variations of sediment transport in an alpine river. Sedimentology, 60, 342–357.
    [Google Scholar]
  9. Benson, M.A. (1968) Uniform flood‐frequency estimating methods for federal agencies. Water Resour. Res., 4, 891–908.
    [Google Scholar]
  10. Berger, J.P. (1992) Paléontologie de la Molasse de Suisse Occidentale, taxonomie, biostratigraphie, paléoecologie, paléogéographie et paleoclimatology. Habilitation Thesis, Univ. Fribourg, pp. 405. Fribourg.
    [Google Scholar]
  11. Berger, W. (1957) Untersuchungen an der obermiozänen (sarmatischen) Flora von Gabbro (Monti Livornesi) in der Toskana, ein Beitrag zur Auswertung tertiärer Blattforen für die Klima‐ und Florengeschichte. Volume 51. Palaeontograph. Italy, 96pp.
    [Google Scholar]
  12. Blissenbach, E. (1952) Relation of surface angle distribution to particle size distribution on alluvial fans. J. Sediment. Petrol., 22, 25–28.
    [Google Scholar]
  13. Buffington, J.M. & Montgomery, D.R. (1997) A systematic analysis of eight decades of in‐ cipient motion studies, with special reference to gravel‐bedded rivers. Water Res. Res., 33, 1993–2029.
    [Google Scholar]
  14. Carretier, S. & Lucazeau, F. (2005) How does alluvial sedimentation at range fronts modify the erosional dynamics of mountain catchments?Basin Res., 17, 361–381.
    [Google Scholar]
  15. Castelltort, S. & Van den Driessche, J. (2003) How plausible are high‐frequency sediment supply‐driven cycles in the stratigraphic record?Sediment. Geol., 157, 3–13.
    [Google Scholar]
  16. Cerling, T.E. (1984) The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth Planet. Sci. Lett., 71, 229–240.
    [Google Scholar]
  17. Cerling, T.E. (1991) Carbon dioxide in the atmosphere: evidence from Cenozoic and Mesozoic paleosols. Am. J. Sci., 291, 377–400.
    [Google Scholar]
  18. Cerling, T.W., Quade, J., Wang, Y. & Bowman, J.R. (1997) Carbon isotopes in soils and palaeosols as ecology and palaeoecology indicators. Nature, 341, 138–139.
    [Google Scholar]
  19. Church, M. (2006) Bed material transport and the morphology of alluvial river channels. Annu. Rev. Earth Planet. Sci., 34, 325–354.
    [Google Scholar]
  20. Densmore, A.L., Gupta, S., Allen, P.A. & Dawers, N.H. (2007) Transient landscapes at fault tips. J. Geophys. Res., 112, F03S08.
    [Google Scholar]
  21. Duller, R.A., Whittaker, A.C., Fedele, J.J., Whitchurch, A.L., Springett, J., Smithells, R., Fordyce, S. & Allen, P.A. (2010) From grain size to tectonics. J. Geophys. Res. Earth Surf., 115, F03022.
    [Google Scholar]
  22. Ferguson, R., Hoey, T., Wathen, S. & Werritty, A. (1996) Field evidence for rapid downstream fining of river gravels through selective transport. Geology, 24, 179–182.
    [Google Scholar]
  23. Flemings, P.B. & Jordan, T.E. (1990) Stratigraphic modeling of foreland basins: interpreting thrust deformation and lithospheric rheology. Geology, 18, 430–434.
    [Google Scholar]
  24. Foremann, B.Z., Heller, P.L. & Clementz, M.T. (2012) Fluvial response to abrupt global warming at the Palaeocene/Eocene boundary. Nature, 491, 92–95.
    [Google Scholar]
  25. Friend, P.F. (1983) Towards the field classification of alluvial architecture or sequence. In: Modern and Ancient Fluvial Systems (Ed. by CollinsonJ.D. & LewinJ. ) Int. Assoc. Sedimentol. Spec. Publ., 6, 345–354.
    [Google Scholar]
  26. Haus, H. (1937) Geologie der Gegend von Schangnau im oberen Emmental (Kt. Bern). Ein Beitrag zur Stratigraphie und Tektonik der subalpinen Molasse und des Alpenrande: Beiträge zur geologischen Karte der Schweiz, NF75, Schweiz. Geol. Komm., 93 pp.
    [Google Scholar]
  27. Heller, P.L. & Paola, C. (1992) The large‐scale dynamics of grain‐size variation in alluvial basins, 2: application to syntectonics conglomerate. Basin Res., 4, 73–90.
    [Google Scholar]
  28. Hetényi, M. (1946) Beams on Elastic Foundation. Univ. Mich. Press, Ann Arbor. 255 pp.
    [Google Scholar]
  29. Homewood, P., Allen, P.A. & Williams, G.D. (1986) Dynamics of the Molasse Basin of western Switzerland. In: Foreland Basins (Ed. by AllenP.A. & HomewoodP. ) Int. Assoc. Sedimentol. Spec. Publ., 8, 199–217.
    [Google Scholar]
  30. Howard, A.D. (1980) Thresholds in river regimes. In: Thresholds in Geomorphology (Ed. by D.R.Coates & J.D.Vitek ), pp. 227–258. Allen and Unwin, Boston, MA.
    [Google Scholar]
  31. Jarrett, R.D. (1984) Hydraulics of high‐gradient streams. J. Hydraul. Eng., 110, 1519–1539.
    [Google Scholar]
  32. Jordan, T.E. & Flemings, P.B. (1991) Large‐scale stratigraphic architecture, eustatic variation, and unsteady tectonism: a theoretical evaluation. J. Geophys. Res., 96, 6681–6699.
    [Google Scholar]
  33. Kempf, O., Matter, A., Burbank, D.W. & Mange, M. (1999) Depositional and structural evolution of a foreland basin margin in a magnetostratigraphic framework; the eastern Swiss Molasse Basin. In: Geological Dynamics of Alpine‐Type Mountain Belts; Ancient and Modern (Ed. by EngiM. , MatterA. , PfiffnerA. , TrümpyR. & BergerW.H. ) Int. J. Earth Sci., 88, 253–275.
    [Google Scholar]
  34. Kuhlemann, J. (2000) Post‐collisional sediment budget of circum‐Alpine basins (Central Europe). Mem. Sci. Geol. Pad., 52, 1–91.
    [Google Scholar]
  35. Kuhlemann, J. & Kempf, O. (2002) Post‐Eocene evolution of the North Alpine Foreland Basin and its response Alpine tectonics. Sediment. Geol., 152, 45–78.
    [Google Scholar]
  36. Kuhlemann, J., Frisch, W., Dunkl, I. & Szekely, B. (2001) Quantifying tectonic versus erosive denudation by the sediment budget; the Miocene core complexes of the Alps. Tectonophysics, 330, 1–23.
    [Google Scholar]
  37. Lenzi, M.A., Mao, L. & Comiti, F. (2006) When does bedload transport begin in steep boulder‐bed streams?Hydrol. Process., 20, 3517–3533.
    [Google Scholar]
  38. Long, S., McQuarrie, N., Togay, T. & Grujic, D. (2011) Geometry and crustal shortening of the Himalayan fold‐thrurst belt, eastern and central Bhutan. Geol. Soc. Am. Bull., 7(8), 1427–1447.
    [Google Scholar]
  39. Lunt, L.A., Bridge, J.S. & Tye, B. (2004) A quantitative, three‐dimensional depositional model of gravelly braided rivers. Sedimentology, 51, 377–414.
    [Google Scholar]
  40. Mägert, M. (1998) Sedimentation und Entwicklung des Beichlen‐Schuttfächers (Untere Süsswassermolasse – Entlebuch). Unpublished PhD Thesis, Univ. Bern.
  41. Manning, R. (1891) On the flow of water in open channels and pipes. Trans. Inst. Civil Eng. Ireland, 20, 161–207.
    [Google Scholar]
  42. Matter, A. (1964) Sedimentologische Untersuchungen im östlichen Napfgebiet (Entlebuch‐Tal der Grossen Fontanne, Kt. Luzern). Eclogae Geol. Helv., 57, 315–428.
    [Google Scholar]
  43. Matter, A., Homewood, P., Caron, C., Rigassi, D., Van Stujivenberg, J., Weidmann, M. & Winkler, W. (1980) Flysch and molasse of western and central Switzerland. In: Geology of Switzerland, A Guidebook, Part B, Excursions (Ed. by TrümpyR. ), Schweiz. Geol. Komm., 261–293.
    [Google Scholar]
  44. Miall, A.D. (1985) Architectural element analysis: a new method of facies analysis applied to fluvial deposits. Earth‐Sci. Rev., 22, 261–308.
    [Google Scholar]
  45. Miall, A.D. (1996) The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis, and Petroleum Geology. Springer, Berlin. 584 pp.
    [Google Scholar]
  46. Milnes, A.G. & Pfiffner, O.A. (1980) Tectonic evolution of the central Alps in the cross section St. Gallen‐Como. Eclogae Geol. Helv., 73, 619–633.
    [Google Scholar]
  47. Molnar, P. (2001) Climate change, flooding in arid environments, and erosion rates. Geology, 29, 1071–1074.
    [Google Scholar]
  48. Montgomery, D.R. & Buffington, J.M. (1997) Channel‐reach morphology in mountain drainage basins. Geol. Soc. Am. Bull., 109, 596–611.
    [Google Scholar]
  49. Mook, W. & de Vries, J.J. (2000) Environmental Isotopes in the Hydrological Cycle, Principles and Applications, Volume I: Introduction‐Theory, Methods, Review. IAEA publications, UNESCO, Paris, 271 pp.
    [Google Scholar]
  50. Naylor, M. & Sinclair, H.D. (2007) Punctuated thrust deformation in the context of doubly vergent thrust wedges: implications for the localization of uplift and exhumation. Geology, 35, 559–562.
    [Google Scholar]
  51. Paola, C., Heller, P.L. & Angevine, C. (1992) The large‐scale dynamics of grain‐size variation in alluvial basins, 1: Theory. Basin Res., 4, 73–90.
    [Google Scholar]
  52. Parker, G., Paola, C., Whipple, K.X. & Mohrig, D. (1998) Alluvial fans formed by channelized fluvial and sheet flow. I: Theory. J. Hydraul. Eng., 124, 1–11.
    [Google Scholar]
  53. Pfiffner, O.A. (1986) Evolution of the north Alpine foreland basin in the central Alps. In: Foreland Basins (Ed. by AllenP.A. & HomewoodP. ) Int. Assoc. Sedimentol. Spec. Publ., 8, 219–228.
    [Google Scholar]
  54. Robinson, R.A.J. & Slingerland, R.L. (1998) Origin of fluvial grain size trends in a foreland bas in: the Pocono Formation of the central Appalachian Basin. J. Sediment. Res., 68, 473–486.
    [Google Scholar]
  55. Rohais, S., Bonnet, S. & Eschard, R. (2012) Sedimentary record of tectonic and climatic erosional perturbations in an experimental coupled catchment‐fan system. Basin Res., 24, 198–212.
    [Google Scholar]
  56. Rosenberg, C.L. & Berger, A. (2009) On the causes and modes of exhumation and lateral growth of the Alps. Tectonics, 28, TC6001.
    [Google Scholar]
  57. Rust, B.R. (1978) Depositional models for braided alluvium. In: Sedimentology, Fluvial (Ed. by MiallA.D. ) Mem. Can. Soc. Petrol. Geol., 5, 221–245.
    [Google Scholar]
  58. Schlunegger, F. & Norton, K.P. (2013) Headward retreat of streams in the Late Oligocene to Early Miocene Swiss Alps. Sedimentology, 60, 85–101.
    [Google Scholar]
  59. Schlunegger, F., Matter, A. & Mange, M. (1993) Alluvial fan sedimentation and structure of the southern Molasse Basin margin, Lake Thun area, Switzerland. Eclogae Geol. Helv., 86, 717–750.
    [Google Scholar]
  60. Schlunegger, F., Burbank, D.W., Matter, A., Engesser, B. & Mödden, C. (1996) Magnetostratigraphic calibration of the Oligocene to Middle Miocene (30‐15 Ma) mammal biozones and depositional sequences of the Swiss Molasse Basin. Eclogae Geol. Helv., 89, 753–788.
    [Google Scholar]
  61. Schlunegger, F., Matter, A., Burbank, D.W. & Klaper, E.M. (1997a) Magnetostratigraphic constraints on relationships between evolution of the central Swiss Molasse basin and Alpine orogenic events. Geol. Soc. Am. Bull., 109, 225–241.
    [Google Scholar]
  62. Schlunegger, F., Matter, A., Burbank, D.W., Leu, W., Mange, M. & Mátyás, J. (1997b) Sedimentary sequences, seimsofacies and evolution of depositional systems of the Oligo‐Miocene Lower Freshwater Molasse group, Switzerand. Basin Res., 9, 1–26.
    [Google Scholar]
  63. Schlunegger, F., Rieke‐Zapp, D. & Ramseyer, K. (2007) Possible environmental effects on the evolution of the Alps‐Molasse Basin system. Swiss J. Geosci., 100, 383–405.
    [Google Scholar]
  64. Schmid, S.M., Pfiffner, O.A., Froitzheim, N., Schönborn, G. & Kissling, E. (1996) Geophysical‐geological transect and tectonic evolution of the Swiss‐Italian Alps. Tectonics, 15, 1036–1064.
    [Google Scholar]
  65. Schumm, A.S. (1986) Speculations concerning palaeohydraulic controls of terrestrial sedimentation. Geol. Soc. Am. Bull., 79, 1573–1588.
    [Google Scholar]
  66. Shields, A. (1936) Anwendung der Ahnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung. Mitteilung der preussischen Versuchsanstalt fur Wasserbau und Schiffbau, 26. (Berlin).
  67. Sinclair, H.D. & Allen, P.A. (1992) Vertical versus horizontal motions in the Alpine orogenic wedge: stratigraphic response in the foreland basin. Basin Res., 4, 215–232.
    [Google Scholar]
  68. Sinclair, H.D., Coakley, B.J., Allen, P.A. & Watts, A.B. (1991) Simulation of foreland basin stratigraphy using a diffusion model of mountain belt uplift and erosion: an example from the central Alps, Switzerland. Tectonics, 10, 599–620.
    [Google Scholar]
  69. Strunck, P. & Matter, A. (2002) Depositional evolution of the western Swiss Molasse. Eclogae Geol. Helv., 95, 197–222.
    [Google Scholar]
  70. Tal, M. & Paola, C. (2007) Dynamic single‐thread channels maintained by the interaction of flow and vegetation. Geology, 35, 347–350.
    [Google Scholar]
  71. Terance, J.L. & McKenzie, J.A. (2001) Lacustrine oxygen isotope record of 20(th)‐century climate change in central Europe: evaluation of climatic controls on oxygen isotopes in precipitation. J. Paleolimnol., 26, 131–146.
    [Google Scholar]
  72. Trümpy, R. (1980) Geology of Switzerland: Geological Excursions, A Guide‐Book. Wepf & Co. Verlag, Basel, 334 pp.
    [Google Scholar]
  73. Tucker, G.E. & Slingerland, R.S. (1997) Drainage basin responses to climate change. Water Res. Res., 33, 2031–2047.
    [Google Scholar]
  74. Turcotte, D.L. & Green, L. (1993) A scale‐invariant approach to flood‐ frequency analysis. Stochastic Hydrol. Hydraul., 7, 33–40.
    [Google Scholar]
  75. Turcotte, D.L. & Schubert, G. (1982) Geodynamics: Application of Continuum Physics to Geological Problems. John Wiley, New York. 650 pp.
    [Google Scholar]
  76. Uba, C.E., Strecker, M.R. & Schmitt, A.K. (2007) Increased sediment accumulation rates and climatic forcing in the central Andes during the late Miocene. Geology, 35, 979–982.
    [Google Scholar]
  77. Van Dijk, W.M., van de Lageweg, W.I. & Kleinhans, M.G. (2012) Experimental meandering river with chute cutoffs. J. Geophys. Res., 117, F03023.
    [Google Scholar]
  78. Whipple, K.X. (2004) Bedrock rivers and the geomorphology of active orogens. Annu. Rev. Earth Planet. Sc. Lett, 32, 151–185.
    [Google Scholar]
  79. Whittaker, A.C., Duller, R.A., Springett, J., Smithells, R., Whitchurch, A.L. & Allen, P.A. (2011) Decoding downstream trends in stratigraphic grain size as a function of tectonic subsidence and sediment supply. Geol. Soc. Am. Bull., 123, 1363–1382.
    [Google Scholar]
  80. Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686–693.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12070
Loading
/content/journals/10.1111/bre.12070
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error