1887
Volume 27, Issue 3
  • E-ISSN: 1365-2117

Abstract

Abstract

Relative ages of late Cenozoic stratigraphy throughout the Caspian region are referenced to regional stages that are defined by changes in microfauna and associated extreme (>1000 m) variations in Caspian base level. However, the absolute ages of these stage boundaries may be significantly diachronous because many are based on the first occurrence of either transgressive or regressive facies, the temporal occurrence of which should depend on position within a basin. Here, we estimate the degree of diachroneity along the Akchagyl regional stage boundary within the Caspian basin system by presenting two late Miocene‐Pliocene aged measured sections, Sarica and Vashlovani, separated by 50 km and exposed within the Kura fold‐thrust belt in the interior of the Kura Basin. The Kura Basin is a western subbasin of the South Caspian Basin and the sections presented here are located >250 km from the modern Caspian coast. New U‐Pb detrital zircon ages from the Sarica section constrain the maximum depositional age for Productive Series strata, a lithostratigraphic package considered correlative with the 2–3 Myr‐long regional Eoakchagylian or Kimmerian stage that corresponds to a period of extremely low (>500 m below the modern level) Caspian base level. This new maximum depositional age from the Productive Series at Sarica of 2.5 ± 0.2 Ma indicates that the regionally extensive Akchagyl transgression, which ended the deposition of the Productive Series near the Caspian coast at 3.2 Ma, may have appeared a minimum of 0.5 Myr later in the northern interior of the Kura Basin than at the modern Caspian Sea coast. The results of this work have important implications for the tectonic and stratigraphic history of the region, suggesting that the initiation of the Plio‐Pleistocene Kura fold‐thrust belt may have not been as diachronous along strike as previously hypothesized. More generally, these results also provide a measure of the magnitude of diachroneity possible along sequence boundaries, particularly in isolated basins. Comparison of accumulation rates between units in the interior of the Kura subbasin and the South Caspian main basin suggest that extremely large variations in these rates within low‐stand deposits may be important in identifying the presence of subbasins in older stratigraphic packages.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12069
2014-05-10
2024-04-27
Loading full text...

Full text loading...

References

  1. Abdullaev, R.N., Agabekov, M.G. & Gavrilov, M.D. (1957) K‐38‐XXIX. Geological Map of the USSR. Scale 1:200,000. Ministry of Geology and Conservation of Mineral Resources of the USSR, Moscow.
  2. Abreu, V. & Nummedal, D. (2007) Miocene to quaternary sequence stratigraphy of the South and Central Caspian Basins. In: Oil and Gas of the Greater Capsian Area (Ed. by YilmazP.O. & IsakenG.H. ), AAPG Stud. Geology, 55, 65–86.
    [Google Scholar]
  3. Agustí, J., Vekua, A., Oms, O., Lordkipanidze, D., Bukhsianidze, M., Kiladze, G. & Rook, L. (2009) The Pliocene‐Pleistocene succession of Kvabebi (Georgia) and the background to the early human occupation of Southern Caucasus. Quatern. Sci. Rev., 28, 3275–3280.
    [Google Scholar]
  4. Aliyeva, E.G.‐M. (2005) Reservoirs of the lower Pliocene productive series at the western flank of the south Caspian basin. Lithol. Min. Resour., 40, 267–278.
    [Google Scholar]
  5. Ali‐Zade, A.A. (2005) Geological Map of Azerbaijan Republic. Scale 1:500,000. National Academy of Sciences of Azerbaijan Republic Geology Institute, Baku, Azerbaijan.
  6. Allen, J.L. & Johnson, C.L. (2011) Architecture and formation of transgressive‐regressive cycles in marginal marine strata of the John Henry Member, Straight Cliffs Formation, Upper Cretaceous of Southern Utah, USA. Sedimentology, 58, 1486–1513.
    [Google Scholar]
  7. Allen, M.B., Jones, S., Ismail‐Zadeh, A., Simmons, M. & Anderson, L. (2002) Onset of subduction as the cause of rapid Pliocene‐Quaternary subsidence in the South Caspian Basin. Geology, 30, 775–778.
    [Google Scholar]
  8. Allen, M.B., Vincent, S.J., Alsop, G.I., Ismail‐Zadeh, A. & Flecker, R. (2003) Late Cenozoic deformation in the South Caspian Region: effects of a rigid basement block within a collision zone. Tectonophysics, 366, 223–239.
    [Google Scholar]
  9. Allen, P.A., Armitage, J.J., Carter, A., Duller, R.A., Michael, N., Sinclair, H.D., Whitchurch, A.L. & Whittaker, A.C. (2013) The Qs problem: sediment volumetric balance of proximal foreland basin systems. Sedimentology, 60, 102–130.
    [Google Scholar]
  10. Andersen, T. (2005) Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation. Chem. Geol., 216, 249–270.
    [Google Scholar]
  11. Avdeev, B. & Niemi, N.A. (2011) Rapid Pliocene exhumation of the central Greater Caucasus constrained by low‐temperature thermochronometry. Tectonics, 30, TC2009.
    [Google Scholar]
  12. Azizbekov, S.A. (ed.) (1972) Azerbaijan Ssr (in Russian). Geology of the USSR. Nauka, Moscow.
    [Google Scholar]
  13. van Baak, C.G.C. (2010) Glacio‐Marine Transgressions of the Early and Middle Pleistocene Caspian Basin, Azerbaijan. Utrecht University, Utrecht, the Netherlands.
    [Google Scholar]
  14. van Baak, C.G.C., Vasiliev, I., Stoica, M., Kuiper, K.F., Forte, A.M., Aliyeva, E. & Krijgsman, W. (2013) A magnetostratigraphic time frame for Plio‐Pleistocene transgressions in the South Caspian Basin, Azerbaijan. Global Planet. Change, 103, 119–134.
    [Google Scholar]
  15. Ballato, P. & Strecker, M.R. (2013) Assessing tectonic and climatic causal mechanisms in foreland‐basin stratal architecture: insights from the Alborz Mountains, northern Iran. Earth Surf. Proc. Land., 39, 110–125.
    [Google Scholar]
  16. Bhattacharya, J.P. (2011) Practical problems in the application of the sequence stratigraphic method and key surfaces: integrating observations from ancient fluvial‐deltaic wedges with Quaternary and modelling studies. Sedimentology, 58, 120–169.
    [Google Scholar]
  17. Blum, M.D. & Törnqvist, T.E. (2000) Fluvial repsonse to climate and sea‐level change: a review and look forward. Sedimentology, 47, 2–48.
    [Google Scholar]
  18. Boomer, I., Guichard, F. & Lericolais, G. (2010) Late Pleistocene to Recent ostracod assemblages from the western Black Sea. J. Micropalaeontol, 29, 119–133.
    [Google Scholar]
  19. Brown, L.F., Loucks, R.G. & Trevino, R.H. (2005) Site‐specific sequence‐stratigraphic section benchmark charts are key to regional chronostratigraphic systems tract analysis in growth‐faulted basins. Am. Assoc. Pet. Geol. Bull., 89, 715–724.
    [Google Scholar]
  20. Brozovic, N. & Burbank, D. (2000) Dynamic fluvial systems and gravel progradation in the Himalayan foreland. Geol. Soc. Am. Bull., 112, 394–412.
    [Google Scholar]
  21. Burbank, D. (1983) The chronology of inermontane‐basin development in the northwestern Himalaya and the evolution of the Northwest Syntaxis. Earth Planet. Sci. Lett., 64, 77–92.
    [Google Scholar]
  22. Burbank, D., Beck, R.A., Raynolds, R.G.H., Hobbs, R.S. & Tahirkheli, R.A.K. (1988) Thrusting and gravel progradation in foreland basins: a test of post‐thrusting gravel dispersal. Geology, 16, 1143–1146.
    [Google Scholar]
  23. Carroll, A.R., Graham, S.A. & Smith, M.E. (2010) Walled sedimentary basins of China. Basin Res., 22, 17–32.
    [Google Scholar]
  24. Carter, R.M., Fulthorpe, C.S. & Naish, T.R. (1998) Sequence concepts at seismic and outcrop scale: the distinction between physical and conceptual stratigraphic surfaces. Sed. Geol., 122, 165–179.
    [Google Scholar]
  25. Casas‐Sainz, A.M., Soto‐Marin, R., Gonzalez, A. & Villalain, J.J. (2005) Folded onlap geometries: implications for recognition of syn‐sedimentary folds. J. Struct. Geol., 27, 1644–1657.
    [Google Scholar]
  26. Catuneanu, O. (2002) Sequence stratigraphy of clastic systems: concepts, merits, and pitfalls. J. Afr. Earth Sc., 35, 1–43.
    [Google Scholar]
  27. Catuneanu, O., Willis, A.J. & Miall, A.D. (1998) Temporal significance of sequence boundaries. Sed. Geol., 121, 157–178.
    [Google Scholar]
  28. Devlin, W.J., Cogswell, J.M., Gaskins, G.M., Isaken, G.H., Picther, D.M., Puls, D.P., Stanely, K.O. & Wall, G.R.T. (1999) South Caspian basin: young, cool, and full of promise. GSA Today, 9, 1–9.
    [Google Scholar]
  29. Dumont, H.J. (1998) The Caspian Lake: history, biota, structure, and function. Limnol. Oceanogr., 43, 44–52.
    [Google Scholar]
  30. Fielding, C.R., Ashworth, P.J., Best, J.L., Prokocki, E.W. & Sambrook Smith, G.H. (2012) Tributary, distributary and other fluvial patterns: what really represents the norm in the continental rock record?Sed. Geol., 261–262, 15–32.
    [Google Scholar]
  31. Forte, A.M. (2012) Late Cenozoic Evolution of the Greater Caucasus Mountains and Kura Foreland Basin: Implications for Early Orogenesis. University of California, Davis.
    [Google Scholar]
  32. Forte, A.M. & Cowgill, E. (2013) Late Cenozoic base‐level variations of the Caspian Sea: a new review of its history and proposed driving mechansims. Palaeogeogr. Palaeoclimatol. Palaeoecol., 386, 392–407.
    [Google Scholar]
  33. Forte, A.M., Cowgill, E., Bernardin, T., Kreylos, O. & Hamann, B. (2010) Late Cenozoic deformation of the Kura fold‐thrust belt, southern Greater Caucasus. Geol. Soc. Am. Bull., 122, 465–486.
    [Google Scholar]
  34. Forte, A.M., Cowgill, E., Murtuzayev, I., Kangarli, T. & Stoica, M. (2013) Structual geometries and magnitude of shortening in the eastern Kura fold‐thrust belt, Azerbaijan: implications for the development of the Greater Caucasus Mountains. Tectonics, 32, doi: 10.1002/tect.20032.
    [Google Scholar]
  35. Gehrels, G.E. (2012) Detrital zircon U‐Pb geochronology: current methods and new opportunties. In: Recent Advances in Tectonics of Sedimentary Basins (Ed. by C.J.Busby & A.Azor ), pp. 47–62. Blackwell Publishing, West Sussex, UK.
    [Google Scholar]
  36. Gehrels, G.E., Valencia, V. & Ruiz, J. (2008) Enhanced precision, accuracy, efficiency, and spatial resoultion of U‐Pb ages by laser ablation‐multicollector‐inductively coupled plasma‐mass spectrometry. Geochem. Geophys. Geosyst., 9, Q03017.
    [Google Scholar]
  37. Gobejishvili, R., Lomidze, N. & Tielidze, L. (2011) Late Pleistocene (Würmian) Glaciations of the Caucasus. In: Quaternary Glaciations – Extent and Chronology (Ed. by EhlersJ. , GibbardP. L. & HughesP.D. ), Dev. Quarter. Sci., 15, 141–147. Elsevier, Amsterdam.
    [Google Scholar]
  38. Gradstein, F.M., Ogg, J.G., Schmitz, M. & Ogg, G. (eds.) (2012) The Geologic Time Scale 2012. Elsevier, Amsterdam.
    [Google Scholar]
  39. Green, T., Abdullayev, N., Hossack, J., Riley, G. & Roberts, A.M. (2009) Sedimentation and subsidence in the south Caspian Basin, Azerbaijan. In: South Caspian to Central Iran Basins (Ed. by BrunetM.‐F. , WilmsenM. & GranathJ.W. ), Geol. Soc., 312, 241–260.
    [Google Scholar]
  40. Gudjabidze, G.E. (2003) Geological map of Georgia. Scale 1:500,000 (Ed. by I.P.Gamkrelidze , G.N.Abesadze , V.I.Buadze , T.V.Djanelidze , O.Z.Dudauri , D.N.Kandelaki , G.S.Nadareishvili , D.Papava , M.P.Pruidze , D.M.Shengelia & M.V.Topchishvili ), Georgian State Department of Geology and National Oil Company, Tbilisi, Georgia.
  41. Haq, B.U., Hardenbol, J. & Vail, P.R. (1987) Chronology of fluctuating sea levels since the Triassic. Science, 235, 1156–1167.
    [Google Scholar]
  42. Heller, P.L., Angevine, C.L., Winslow, N.S. & Paola, C. (1988) Two‐phase stratigraphic model of foreland‐basin sequences. Geology, 16, 501–504.
    [Google Scholar]
  43. Hinds, D.J., Aliyeva, E., Allen, M.B., Davies, C.E., Kroonenberg, S.B., Simmons, M. & Vincent, S.J. (2004) Sedimentation in a discharge dominated fluvial‐lacustrine system: the Neogene Productive Series of the South Caspian Basin, Azerbaijan. Mar. Pet. Geol., 21, 613–638.
    [Google Scholar]
  44. van Hinte, J.E. (1978) Geohistory analysis – application of micropaleontology in exploration geology. Am. Assoc. Pet. Geol. Bull., 62, 201–222.
    [Google Scholar]
  45. Hoogendoorn, R.M., Boels, J.F., Kroonenberg, S.B., Simmons, M., Aliyeva, E., Babazadeh, A.D. & Huseynov, D. (2005) Development of the Kura delta, Azerbaijan; a record of Holocene Caspian sea‐level changes. Mar. Geol., 222–223, 359–380.
    [Google Scholar]
  46. Horton, B.K., Yin, A., Spurlin, M.S., Zhou, J. & Wang, J. (2002) Paleocene‐Eocene syncontractional sedimentation in narrow, lacustrine‐dominated basins of east‐central Tibet. Geol. Soc. Am. Bull., 114, 771–786.
    [Google Scholar]
  47. Immenhauser, A. (2009) Estimating palaeo‐water depth from the physical rock record. Earth Sci. Rev., 96, 107–139.
    [Google Scholar]
  48. Inan, S., Yalcin, M.N., Guliev, I., Kuliev, K. & Feizullayev, A.A. (1997) Deep petroleum occurrences in the Lower Kura Depression, South Caspian Basin, Azerbaijan: an organic geochemical and basin modeling study. Mar. Pet. Geol., 14, 731–762.
    [Google Scholar]
  49. Isaneva, M.L. & Sadngova, T.D. (1999) Paleogeography and paleotectonics of western Azerbaijan during upper pliocene and pleistocene time. Geophysics News in Azerbaijan, 2.
    [Google Scholar]
  50. Jackson, J., Priestly, K., Allen, M.B. & Berberian, M. (2002) Active tectonics of the south Caspian basin. Geophys. J. Int., 148, 214–245.
    [Google Scholar]
  51. Jones, R.W. & Simmons, M. (1996) A review of the stratigraphy of Eastern Paratethys (Oligocene‐Holocene). Bull. Nat. Hist. Mus. Lond., 52, 25–49.
    [Google Scholar]
  52. Karpytchiev, Y.A. (1993) Reconstruction of Caspian Sea‐level fluctuations: radiocarbon dating coastal and bottom deposits. Radiocarbon, 35, 409–420.
    [Google Scholar]
  53. Kizlov, A. & Toropov, P. (2007) East European river runoff and Black Sea and Caspian Sea level changes as simulated within the Paleoclimate modeling intercomparison project. Quatern. Int., 167–168, 40–48.
    [Google Scholar]
  54. Kozhevnikova, I.A. & Shveikina, V.I. (2008) Nonlinear dynamics of level variations in the Caspian Sea. Water Resour., 35, 297–304.
    [Google Scholar]
  55. Krijgsman, W., Stoica, M., Vasiliev, I. & Popov, V.V. (2010) Rise and fall of the Paratethys Sea During the Messinian Salinity Crisis. Earth Planet. Sci. Lett., 290, 183–191.
    [Google Scholar]
  56. Kroonenberg, S.B., Rusakov, G.V. & Svitoch, A.A. (1997) The wandering of the Volga Delta: a response to rapid Caspian sea‐level change. Sed. Geol., 107, 189–209.
    [Google Scholar]
  57. Kroonenberg, S.B., Alekseevski, N.I., Aliyeva, E., Allen, M.B., Aybulatov, D.N., Baba‐Zadeh, A., Badyukova, E.N., Davies, C.E., Hinds, D.J., Hoogendoorn, R.M., Huseynov, D., Ibrahimov, B., Mamedov, P., Overeem, I., Rusakov, G.V., Suleymanova, S.F., Svitoch, A.A. & Vincent, S.J. (2005) Two Deltas, Two Basins, One River, One Sea: the modern Volga Delta as an analogue for the Neogene productive series, South Caspian Basin. In: River Deltas‐Concepts, Models, and Examples (Ed. by, Giosan, L. & Bhattacharya, J.P.). SEPM Special Publications,), pp. 231–256, Society for Sedimentary Geology (SEPM), Tulsa, OK.
    [Google Scholar]
  58. Kvasov, D.D. (1964) Middle Pliocene hydrology of the Caspian. Dokl. Earth Sci., 158, 39–41.
    [Google Scholar]
  59. Kvasov, D.D. (1983) Causes of the marked regression of the Black and Caspian Seas about five million years ago. Oceanology, 23, 331–335.
    [Google Scholar]
  60. Li, C.X., Ivanov, V., Fan, D.D., Korotaev, V., Yang, S.Y., Chalov, R. & Liu, S.G. (2004) Development of the Volga Delta in response to Caspian Sea‐level fluctuation during last 100 years. J. Coastal Res., 20, 401–414.
    [Google Scholar]
  61. Liu, K., Liang, T.C.K., Paterson, L. & Kendall, C.G.S.C. (1998) Computer simulation of the influence of basin physiography on condensed section deposition and maximum flooding. Sed. Geol., 122, 181–191.
    [Google Scholar]
  62. Liu, J.G., Mason, P.J., Clerici, N., Chen, S., Davis, A., Miao, F., Deng, H. & Liang, L. (2004) Landslide hazard assessment in the Three Gorges area of the Yangtze river Using Aster imagery: Zigui‐Badong. Geomorphology, 61, 171–187.
    [Google Scholar]
  63. Mamedov, A.V. (1973) Geological Structure of the Mid‐Kura Depression (in Russian). Elm, Baku.
    [Google Scholar]
  64. Mamedov, A.V. (1997) The late pleistocene‐holocene history of the Caspain sea. Quatern. Int., 41(42), 161–166.
    [Google Scholar]
  65. Mancini, E.A. & Tew, B.H. (1997) Recognition of maximum flooding events in mixed siliciclastic‐carbonate systems: key to global chronostratigraphic correlation. Geology, 25, 351–354.
    [Google Scholar]
  66. Martin, J., Paola, C., Abreu, V., Neal, J. & Sheets, B. (2009) Sequence stratigraphy of experimental strata under known conditions of differential subsidence and variable base level. Am. Assoc. Pet. Geol. Bull., 93, 503–533.
    [Google Scholar]
  67. Matoshko, A.V., Gozhik, P.F. & Danukalova, G. (2004) Key Late Cenozoic fluvial archives of eastern Europe: the Dniester, Dnieper, Don and Volga. Proc. Geol. Assoc., 115, 141–173.
    [Google Scholar]
  68. Menabde, I.V., Svitoch, A.A. & Yanina, T.A. (1993) Changes in Caspian Salinity during the Pleistocene (According to Data of an Analysis of Malacofauna). Water Resour., 19, 303–307.
    [Google Scholar]
  69. Miall, A.D. (1977) A review of the braided‐river depositional environment. Earth Sci. Rev., 13, 1–62.
    [Google Scholar]
  70. Milanovsky, E. (2000) The Plio‐Pleistocene glaciation in eastern Europe, Siberia, and the Caucasus: evolution of thoughts. Eclogae Geol. Helv., 93, 379–394.
    [Google Scholar]
  71. Milanovsky, E. (2008) Origin and development of ideas on Pliocene and Quaternary glaciations in northern and eastern Europe, Iceland, Caucasus and Siberia. In: History of Geomorphology and Quaternary Geology (Ed. by GrapesR. , OldroydD. & GrigelisA. ) Geol. Soc. Lond., 301, 87–115.
    [Google Scholar]
  72. Miller, K.G., Mountain, G.S., Wright, J.D. & Browning, J.V. (2011) A 180‐million‐year record of sea level and ice volume variations from continental margins and deep‐sea isotopic records. Oceanography, 24, 40–53.
    [Google Scholar]
  73. Munteanu, I., Matenco, L., Dinu, C. & Cloetingh, S. (2012) Effects of large sea‐level variations in connected basins: the Dacian‐Black Sea system of the Eastern Paratethys. Basin Res., 24, 583–597.
    [Google Scholar]
  74. Nalivkin, D.V. (1973) The Mediterranean geosyncline. In: Geology of the U.S.S.R. (English Translation) (Ed. by D.V.Nalivkin ), pp. 578–685. Oliver and Boyd, Edinburgh.
    [Google Scholar]
  75. Nalivkin, D.V. (1976) Geologic Map of the Caucasus (in Russian). scale 1:500,000. Ministry of Geology, USSR, Moscow.
  76. Nichols, G.J. & Fisher, J.A. (2007) Processes, facies and architecture of fluvial distributary system deposits. Sed. Geol., 195, 75–90.
    [Google Scholar]
  77. Nichols, G.J. & Hirst, J.P. (1998) Alluvial fans and fluvial distributary systems, Oligo‐Miocene, northern Spain: contrasting processes and products. J. Sediment. Res., 68, 879–889.
    [Google Scholar]
  78. Overeem, I., Kroonenberg, S.B., Veldkamp, A., Groenesteijn, K., Rusakov, G.V. & Svitoch, A.A. (2003a) Small‐scale stratigraphy in a large ramp delta: recent and Holocene sedimentation in the Volga Delta, Caspian Sea. Sed. Geol., 159, 133–157.
    [Google Scholar]
  79. Overeem, I., Veldkamp, A., Tebbens, L. & Kroonenberg, S.B. (2003b) Modelling Holocene stratigraphy and depocentre migration of the Volga Delta due to Caspian Sea‐level change. Sed. Geol., 159, 159–175.
    [Google Scholar]
  80. Popov, S.V., Shcherba, I.G., Ilyina, L.B., Nevesskaya, L.A., Paramonova, N.P., Khondkarian, S.O. & Magyar, I. (2006) Late Miocene to Pliocene palaeogeography of the Paratethys and Its relation to the Mediterranean. Palaeogeogr. Palaeoclimatol. Palaeoecol., 238, 91–106.
    [Google Scholar]
  81. Popov, S.V., Antipov, M.P., Zastroshnov, A.S., Kurina, E.E. & Pinchuk, T.N. (2010) Sea‐level fluctuations on the northern shelf of the Eastern Paratethys in the Oligocene‐Neogene. Stratigr. Geol. Correl., 18, 200–224.
    [Google Scholar]
  82. Reynolds, A.D., Simmons, M., Bowman, M.B.J., Henton, J., Brayshaw, A.C., Ali‐Zade, A.A., Guliyev, I.S., Suleymanova, S.F., Ateava, E.Z., Mamedova, D.N. & Koshkarly, R.O. (1998) Implications of outrcrop geology for reservoirs in the Neogene Productive Series: Apsheron Peninsula, Azerbaijan. Am. Assoc. Pet. Geol. Bull., 82, 25–49.
    [Google Scholar]
  83. Rumyantsev, V.A., Rumyanstev, A.O. & Trapeznikov, Y.A. (2008) The nonstationary and nonlinear character of Caspian Sea level variations. Water Resour., 35, 185–190.
    [Google Scholar]
  84. Rychagov, G.I. (1997) Holocene oscillations of the Caspain Sea, and forecasts based on paleogeographical reconstructions. Quatern. Int., 41(42), 167–172.
    [Google Scholar]
  85. Sedletskii, V.S. & Baikov, A.A. (1997) The nature of Caspian Sea level functions. Lithol. Min. Resour., 32, 208–215.
    [Google Scholar]
  86. Shanley, K.W. & McCabe, P.J. (1994) Perspectives on the sequence stratigraphy of continental strata: report of a Working Group at the 1991 Nuna Conference on High Resolution Sequence Stratigraphy. Am. Assoc. Pet. Geol. Bull., 74, 544–568.
    [Google Scholar]
  87. Shirinov, F.A. & Bajenov, Y.P. (1962) Geological Structure of the Southern Foothills of the Greater Caucasus (in Russian). Azerneshr, Baku.
    [Google Scholar]
  88. Steenwinkel, M.V. (1990) Sequence stratigraphy from “spot” outcrops – example from a carbonate‐dominated setting: devonian‐carboniferous transition, Dinant syncinorium (Belgium). Sed. Geol., 69, 259–280.
    [Google Scholar]
  89. Stoica, M., Lazar, I., Krijgsman, W., Vasiliev, I., Jipa, D.C. & Floroiu, A. (2013) Paleoenvironmental evolution of the East Carpathian foredeep during the late Miocene‐early Pliocene (Dacian Basin; Romania). Global Planet. Change, 103, 135–148.
    [Google Scholar]
  90. Strong, N. & Paola, C. (2008) Valleys that never were: time surfaces versus stratigraphic surfaces. J. Sediment. Res., 78, 579–593.
    [Google Scholar]
  91. Svitoch, A.A. (1999) Caspian Sea Level in the Pleistocene: heirarchy and position in the paleogeographic and chronological records. Oceanology, 39, 94–101.
    [Google Scholar]
  92. Svitoch, A.A., Selivanov, A.O. & Yanina, T.A. (2000) The Pont‐Caspian and Mediterranean basins in the Pleistocene (paleogeography and correlation). Oceanology, 40, 868–881.
    [Google Scholar]
  93. Van Wagoner, J.C. & Bertram, G.T. (eds.) (1995) Sequence Stratigraphy of Foreland Basin Deposits. Aapg Memoir. American Association of Petroleum Geologists, Tulsa, OK.
    [Google Scholar]
  94. Vasiliev, I., Krijgsman, W., Langereis, C.G., Panaiotu, C.E., Matenco, L. & Bertotti, G. (2004) Towards an astrochronological framework for the eastern Paratethys Mio‐Pliocene sedimentary sequences of the Foscani basin (Romania). Earth Planet. Sci. Lett., 227, 231–247.
    [Google Scholar]
  95. Vasiliev, I., Krijgsman, W., Stoica, M. & Langereis, C.G. (2005) Mio‐Pliocene magnetostratigraphy in the southern Carpathian foredeep and Mediterranean‐Paratethys correlations. Terra Nova, 17, 376–384.
    [Google Scholar]
  96. Vasiliev, I., Reichart, G.‐J., Davies, G.R., Krijgsman, W. & Stoica, M. (2010) Strontium isotope ratios of the Eastern Paratethys during the Mio‐Pliocene transition: implications for interbasinal connectivity. Earth Planet. Sci. Lett., 292, 123–131.
    [Google Scholar]
  97. Vermeesch, P. (2004) How many grains are needed for a provenance study?Earth Planet. Sci. Lett., 224, 441–451.
    [Google Scholar]
  98. Vincent, S.J., Davies, C.E., Richards, K. & Aliyeva, E. (2010) Contrasting Pliocene fluvial depostional systems within the rapidly subsiding South Caspian basin: a case study of the palaeo‐Volga and palaeo‐Kura river systems in the Surakhany Suite, Upper Productive Series, onshore Azerbaijan. Mar. Pet. Geol., 27, 2079–2106.
    [Google Scholar]
  99. Zubakov, V.A. (1988) Climatostratigraphic scheme of the Black Sea Pleistocene and its correlation with the oxygen‐isotope scale and glacial events. Quatern. Res., 29, 1–24.
    [Google Scholar]
  100. Zubakov, V.A. (1992) Chronostratigraphic correlation of the ponto‐Caspian and Mediterranean Pliocene and terminal Miocene. Paleontologia. I Evolucio., 24–25, 79–89.
    [Google Scholar]
  101. Zubakov, V.A. (2001) History and causes of variations in the Caspian Sea level: the Miopliocene, 7.1–1.95 million years ago. Water Resour., 28, 249–256.
    [Google Scholar]
  102. Zubakov, V.A. & Borzenkova, I.I. (1990) Global Palaeoclimate of the Late Cenozoic. Elsevier, Amsterdam.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12069
Loading
/content/journals/10.1111/bre.12069
Loading

Data & Media loading...

Supplements

Facies associations.

WORD

Micropalaeontology results

WORD

1–3. (Livental); 1, 2. LV, external lateral view; 3. RV., internal view; 4. (Brady) (possible to be considered now as juvenile of sp.), RV, external lateral view; 5, 7. ex. gr. (Livental), juveniles, all RV., external lateral view; 8. Eucypris sp., lateral view of fragmented shells, possible juvenile of Müller; 9. sp., fragmented shell.

IMAGE

1–4. (Linné); 5, 6. sp.; 7–13. (Jones); 7,8. RV, external lateral view; 9. Carapace, lateral view from the RV; 10. LV, external lateral view; 11, 12. RV, external lateral view, juveniles; 13. Carapace, dorsal view; 14, 15. ex. gr. Suzin, RV. lateral external view; 16. Sars, LV, external lateral view; 17. sp., possible juvenile of Sars, RV, external lateral view; 18, 19. Neumayr.

IMAGE

1–4. (Linné); 5–9. (Jones); 5, 6. LV, lateral external view; 7. RV, external lateral view, male; 8, 9. RV, external lateral view, females; 10–14. Livental; 10,11. RV, lateral external view, males; 12, 13. RV, lateral external view, femals; 14, RV, internal view, female; 15, 16. Livental; 15. LV, external lateral view; 16. RV, external lateral view; 17, 18. Neumayr.

IMAGE

1–7. (Jones), with smooth shell, forma ; 1. LV, external lateral view, male; 2. RV, external lateral view, male; 3, 5. Carapace, lateral view from the RV, female; 4. LV, external lateral view, female; 6. LV, internal view, female; 7. Crapace, dorsal view; 8–15. Livental var. ; 8. LV, external lateral view, male; 9. RV, external lateral view, male; 10. Carapace, lateral view from RV, male; 11. LV, external lateral view, female; 12. Carapace, lateral view from RV, female; 13. LV, internal view, female; 14. Carapace, dorsal view, female; 15. Carapace, ventral view, female; 16–21. Livental; 16. LV, external lateral view, male; 17, 18. RV, external lateral view, male; 19. LV, extenal lateral view, female; 20. RV, external alteral view, female; 21. RV, internal view, male; 22–25. ex. gr. Livental; 22. LV, external lateral view, male; 23. RV, external lateral view, male; 24. LV, external lateral view, female; 25. RV, external lateral view, female; 26–31. ex. gr. Livental; 26, 28. LV, external lateral view; 27. RV, external lateral view; 29. Carapace, view from the RV; 30. Carapace, dorsal view; 31, Carapace, ventral view; 32, 33. ex. gr. G. W. Müller; 32. Carapace, lateral view from the LV, male; 33. Carapace, lateral view from the RV, male; 34, 35. ex. gr Neumayr.

IMAGE

U‐Pb geochronologic analyses.

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error