1887
Volume 29, Issue 1
  • E-ISSN: 1365-2117

Abstract

Abstract

The Upper Mississippian (. 325 Ma) Pride Shale and Glady Fork Member in the Central Appalachian Basin comprise an upward‐coarsening, . 60‐m‐thick succession of prodeltaic‐delta front, interlaminated fine‐grained sandstones and mudstones gradational upwards into mouth‐bar and distributary‐channel sandstones. Analysis of laminae bundling in the Pride Shale reveals a hierarchy of tidal cycles (semi‐diurnal, fortnightly neap‐spring) and a distinct annual cyclicity resulting from seasonal fluvial discharge. These tidal rhythmites thus represent high‐resolution chronometers that can be used in basin analysis. Annual cycles average 10 cm in thickness, thus the bulk of the Pride Shale‐Glady Fork Member in any one vertical section is estimated to have accumulated in . 600 years. Progradational clinoforms are assumed to have had dips of 0.3–3° with a median dip of 1.7°; the latter infilled a NE‐SW oriented foreland trough up to 300 km long by 50 km wide in the relatively short time period of 90 kyr. The total volume of sediment in the Pride basin is . 900 km3 which, for an average sediment density of 2700 kg m−3, equates to a total mass of . 2.4 × 106 Mt. Thus, mass sediment load can be estimated as 27 Mt yr−1. For a drainage basin area of 89 000 km2, based on the scale of architectural channel elements and cross‐set thicknesses in the incised‐valley‐fill deposits of the underlying Princeton Formation, suspended sediment yields are estimated at . 310 t km−2 yr−1 equating to a mechanical denudation rate of . 0.116 mm yr−1. Calculated sediment yields and inferred denudation rates are comparable to modern rivers such as the Po and Fly and are compatible with a provenance of significant relief and a climate characterized by seasonal, monsoonal discharge. Inferred denudation rates also are consistent with average denudation rates for the Inner Piedmont Terrane of the Appalachians based on flexural modelling. The integration of stratigraphic architectural analysis with a novel chronometric application highlights the utility of sedimentary archives as a record of Earth surface dynamics.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12162
2015-11-19
2024-04-27
Loading full text...

Full text loading...

References

  1. Allen, J.R.L. (1970) Physical Processes of Sedimentation. Allen and Unwin Ltd., London248.
    [Google Scholar]
  2. Allen, P.A. (2008) Time scales of tectonic landscapes and their sediment routing systems. Geol. Soc. Lond. Spec. Publ., 18, 7–28.
    [Google Scholar]
  3. Baily, R.J. & Smith, D.G. (2010) Scaling in stratigraphic data series: implications for practical stratigraphy. First Break, 28, 57–66.
    [Google Scholar]
  4. Berner, R.A. & Berner, E.K. (1996) The Global Environment: Water, Air and Geochemical Cycles. Prentice Hall, Upper Saddle River, NJ376.
    [Google Scholar]
  5. Blakey, R. (2013) Colorado Plateau Geosystems, Inc. Paleogeographic Maps. http://cpgeosystems.com/paleomaps.html. Accessed 15 July 2014.
  6. Blum, M., Martin, J., Milliken, K. & Garvin, M. (2013) Paleovalley systems: insights from Quaternary analogs and experiments. Earth‐Sci. Rev., 116, 128–169.
    [Google Scholar]
  7. de Boer, P.L., Oost, A.P. & Visser, M.J. (1989) The diurnal inequality of the tide as a parameter for recognizing tidal influences. J. Sed. Petrol., 59, 912–921.
    [Google Scholar]
  8. Braun, D.D. (1989) The depth of the post‐middle Miocene erosion and the age of the present landscape. In: The Rivers and Valleys of Pennsylvania, Then and Now (Ed. by W.D.Sevon ), pp. 16–20. Fieldtrip Guidebook, Harrisburg Area Geological Society Harrisburg, Harrisburg, PA.
    [Google Scholar]
  9. Bridge, J.S. & Tye, R.S. (2000) Interpreting the dimensions of ancient fluvial channel bars, channels, and channel belts from wireline‐logs and cores. Bull. Am. Assoc. Petrol. Geol., 84, 1205–1228.
    [Google Scholar]
  10. Buller, T.B. (2014) Aspects of Cyclic Sedimentation in the Upper Mississippian, Mauch Chunk Group, Southern West Virginia and Southwest Virginia. MS thesis, Virginia Tech, 148.
  11. Carrapa, B. (2010) Resolving tectonic problems by dating detrital minerals. Geology, 38, 191–192.
    [Google Scholar]
  12. Castelltort, S. & van den Driessche, J. (2003) How plausible are high‐frequency sediment supply‐driven cycles in the stratigraphic record?Sed. Geol., 157, 3–13.
    [Google Scholar]
  13. Castro, J.M. & Jackson, P.L. (2001) Bankfull discharge recurrence intervals and regional hydraulic geometry relationships: patterns in the Pacific Northwest, USA. Am. Water Res. Assoc. J., 37, 1249–1262.
    [Google Scholar]
  14. Cecil, C.B. (1990) Paleoclimatic controls on stratigraphic repetition of chemical and siliciclastic rocks. Geology, 18, 533–536.
    [Google Scholar]
  15. Cerveny, P.F., Naeser, C.W., Keleman, P.B., Lieberman, J.E. & Zeitler, P.K. (1989) Zircon fission track ages from Gasherbrum Diorite, Karakorum Range, northern Pakistan. Geology, 17, 1044–1048.
    [Google Scholar]
  16. Copeland, P. & Harrison, M.T. (1990) Episodic rapid uplift in the Himalaya revealed by 40Ar/39Ar analysis of detrital K‐feldspar and muscovite, Bengal Fan. Geology, 18, 354–357.
    [Google Scholar]
  17. Covault, J.A., Craddock, W.H., Romans, B.W., Fildani, A. & Gosai, M. (2013) Spatial and temporal variations in landscape evolution: historic and longer‐term sediment flux through global catchments. J. Geol., 121, 35–56.
    [Google Scholar]
  18. Dalrymple, R.W., Makino, Y. & Zaitlin, B.A. (1991) Temporal and spatial patterns of rhythmite deposition on mudflats in the macrotidal, Cobequid Bay‐Salmon River estuary, Bay of Fundy, Canada. In: Clastic Tidal Sedimentology (Ed. by D.G.Smith , G.E.Reinson , B.A.Zaitlan & R.A.Rahmani ), Can. Soc. Pet. Geol. Memoir, 16:137–160.
    [Google Scholar]
  19. Dalrymple, R.W., Baker, E.K., Harris, P.T. & Hughes, M.G. (2003) Sedimentology and stratigraphy of a tide‐dominated, foreland‐basin delta, Fly River, Papua New Guinea. Tropical Deltas of Southeast Asia and Vicinity‐Sedimentology, Stratigraphy, and Petroleum Geology . Soc. Econ. Paleont. Mineral. Spec. Publ., 76, 147–173.
    [Google Scholar]
  20. Davidson, S.K. & North, C.P. (2009) Geomorphological regional curves for prediction of drainage area and screening modern analogues for rivers in the rock record. J. Sed. Res., 79, 773–792.
    [Google Scholar]
  21. Englund, K.J. & Thomas, R.E. (1990) Late Paleozoic depositional trends in the central Appalachian Basin. U.S. Geol. Surv. Bull., 1839, F1–F19.
    [Google Scholar]
  22. Granger, D.E. & Schaller, M. (2014) Cosmogenic nuclides and erosion at the watershed scale. Elements, 10, 369–373.
    [Google Scholar]
  23. Greb, S.F., Archer, A.W. & de Boer, D.G. (2011) Apogean‐perogean signals encoded in tidal flats at the fluvio‐estuarine transition of Glacier Creek, Turnagian Arm, Alaska: implications for ancient tidal rhythmites. Sedimentology, 58, 1434–1452.
    [Google Scholar]
  24. Harris, P.T., Hughes, M.G., Baker, E.K., Dalrymple, R.W. & Keene, J.B. (2004) Sediment transport in distributary channels and its export to the pro‐deltaic environment in a tidally dominated delta: Fly River, Papua New Guinea. Cont. Shelf Res., 24, 2431–2454.
    [Google Scholar]
  25. Holbrook, J. & Wanas, H. (2014) A fulcrum approach to assessing source‐to‐sink mass balance using channel paleohydrologic paramaters derivable from common fluvial data sets with an example from the Cretaceous of Egypt. J. Sed. Res., 84, 349–372.
    [Google Scholar]
  26. Hori, K., Saito, Y., Zhao, Q. & Wang, P. (2002) Architecture and evolution of the tide‐dominated Changjiang (Yangtze) River delta, China. Sed. Geol., 146, 249–264.
    [Google Scholar]
  27. Hoyal, D. & Sheets, B. (2009) Morphodynamic evolution of experimental cohesive deltas. J. Geophys. Res. Earth Surf., 114, doi:10.1029/2007JF000882.
    [Google Scholar]
  28. Hubbard, S.M., Fildani, A., Romans, B.W., Covault, J.A. & McHargue, T.R. (2010) High‐relief slope clinoform development: insights from outcrop, Magallanes Basin, Chile. J. Sed. Res., 80, 357–375.
    [Google Scholar]
  29. Jaeger, J.M. & Nittrouer, C.A. (1995) Tidal controls on the formation of fine‐scale sedimentary strata near the Amazon River mouth. Mar. Geol., 125, 259–281.
    [Google Scholar]
  30. Jamieson, R.A. & Beaumont, C. (1988) Orogeny and metamorphism: a model for deformation and pressure‐temperature‐time paths with applications to the central and southern Appalachians. Tectonics, 7, 417–445.
    [Google Scholar]
  31. Kvale, E.P. & Archer, A.W. (1991) Characteristics of two, Pennsylvanian‐age, semi‐diurnal tidal deposits in the Illinois Basin, USA. In: Clastic Tidal Sedimentology (Ed. by D.G.Smith , G.E.Reinson , B.A.Zaitlan & R.A.Rahmani ), Can. Soc. Pet. Geol. Memoir, 16, 179–188.
    [Google Scholar]
  32. Larsen, I.J., Montgomery, D.R. & Greenberg, H.M. (2014) The contribution of mountains to global denudation. Geology, 42, 527–530.
    [Google Scholar]
  33. Liu, J.P., Milliman, J.D., Gao, S. & Cheng, P. (2004) Holocene development of the Yellow River's subaqueous delta, North Yellow Sea. Mar. Geol., 209, 45–67.
    [Google Scholar]
  34. Metivier, F. & Gaudemer, Y. (1999) Stability of output fluxes of large rivers in South and East Asia during the last 2 million years. Basin Res., 11, 293–303.
    [Google Scholar]
  35. Miall, A.D. (2015) Updating uniformitarianism: stratigraphy as just a set of ‘frozen accidents’. Geol. Soc. Lond. Spec. Publ., 404, 11–36.
    [Google Scholar]
  36. Miller, D.J. & Eriksson, K.A. (1997) Late Mississippian prodeltaic rhythmites in the Appalachian Basin: a hierarchical record of tidal and climatic periodicities. J. Sed. Res., B67, 653–660.
    [Google Scholar]
  37. Miller, D.J. & Eriksson, K.A. (1999) Linked sequence development and global climate change: the upper Mississippian record in the Appalachian basin. Geology, 27, 35–38.
    [Google Scholar]
  38. Miller, D.J. & Eriksson, K.A. (2000) Sequence stratigraphy of upper Mississippian strata in the Central Appalachians: a record of glacioeustasy and foreland‐basin tectonics. Bull. Am. Assoc. Petrol. Geol., 84, 210–233.
    [Google Scholar]
  39. Milliman, J.D. & Farnsworth, K.L. (2011) River Discharge to the Coastal Ocean: A Global Synthesis. Cambridge University Press, Cambridge384.
    [Google Scholar]
  40. Molnar, P. & England, P. (1990) Late Cenozoic uplift of mountain ranges and global climate change: Chicken or egg?Nature, 346, 29–34.
    [Google Scholar]
  41. Mulder, T. & Syvitski, J.P.M. (1995) Turbidity currents generated at river mouths during exceptional discharges to the world oceans. J. Geol., 103, 285–299.
    [Google Scholar]
  42. Mulder, T., Syvitski, J.P.M., Migeon, S., Faugeres, J.‐C. & Savoye, B. (2003) Marine hyperpycnal flows: initiation, behavior, and related deposits. A review. Mar. Petrol. Geol., 20, 861–882.
    [Google Scholar]
  43. Olariu, C., Steel, R.J. & Petter, A.L. (2010) Delta‐front hyperpycnal bed geometry and implications for reservoir modeling: Cretaceous Panther Tongue delta, Book Cliffs, Utah. Bull. Am. Assoc. Petrol. Geol., 94, 819–845.
    [Google Scholar]
  44. Paola, C. & Bergman, L. (1991) Reconstructing random topography from preserved stratification. Sedimentology, 38, 553–565.
    [Google Scholar]
  45. Park, H., Barbeau, D.L., Rickenbaker, A., Bachmann‐Krug, D. & Gehrels, G. (2010) Application of foreland basin detrital‐zircon geochronology to the reconstruction of the southern and central Appalachian Orogen. J. Geol., 118, 23–44.
    [Google Scholar]
  46. Patruno, S., Hampson, G.J. & Jackson, C.A.L. (2015) Quantitative characterization of deltaic and subaqueous clinoforms. Earth Sci. Rev., 142, 79–119.
    [Google Scholar]
  47. Plotnick, R.E. (1986) A fractal model for the distribution of stratigraphic hiatuses. J. Geol., 94, 885–890.
    [Google Scholar]
  48. Poag, C.W. & Sevon, W.D. (1989) A record of Appalachian denudation in postrift Mesozoic and Cenozoic deposits of the US middle Atlantic Continental Margin. Geomorphology, 2, 119–157.
    [Google Scholar]
  49. Portenga, E.W. & Bierman, P.R. (2011) Understanding Earth's eroding surface with 10Be. GSA Today, 21, 4–10.
    [Google Scholar]
  50. Prior, D.B., Yang, Z.‐S., Bornhold, B.D., Keller, G.H., Lu, N.Z., Wiseman, W.J.Jr, Wright, L.D. & Zhang, J. (1986) Active slope failure, sediment collapse, and silt flows on the modern subaqueous Haunghe (Yellow River) delta. Geo‐Mar. Lett., 6, 85–95.
    [Google Scholar]
  51. Reed, J.S., Eriksson, K.A. & Kowalewski, M. (2005a) Controls on Carboniferous sandstone diagenesis, Central Appalachian basin: a qualitative and quantitative assessment. Sed. Geol., 176, 225–246.
    [Google Scholar]
  52. Reed, J.S., Spotila, J.A., Eriksson, K.A. & Bodnar, R.J. (2005b) The downs and ups of Pennsylvanian strata, central Appalachian basin. Basin Res., 17, 259–268.
    [Google Scholar]
  53. Resentini, A. & Malusa, M.G. (2012) Sediment budgets by detrital apatite fission‐track dating (Rivers Dora Baltea and Arc, Western Alps). In: Mineralogical and Geochemical Approaches to Provenance (Ed. by E.T.Rasbury , S.R.Hemming & N.R.Riggs ) Geological Society of America Special Paper 487, 125–140, doi: 10.1130/2012.2487(08).
    [Google Scholar]
  54. Romans, B.W. & Graham, S.A. (2013) A deep‐time perspective on land‐ocean linkages in the sedimentary record. Ann. Rev. Mar. Sci., 5, 69–94.
    [Google Scholar]
  55. Romans, B.W., Castelltort, S., Covault, J.A., Fildani, A. & Walsh, J.P. (2015) Environmental signal propagation in sedimentary systems across timescales. Earth Sci. Rev., doi: 10.1016/j.earscirev.2015.07.012.
    [Google Scholar]
  56. Sadler, P.M. (1981) Sediment accumulation rates and the completeness of stratigraphic sections. J. Geol., 89, 569–584.
    [Google Scholar]
  57. Sadler, P.M. & Jerolmack, D.J. (2015) Scaling laws for aggradation, denudation, and progradation rates: the case for time‐scale invariance at sediment sources and sinks. Geol. Soc. Lond. Spec. Publ., 404, 69–88.
    [Google Scholar]
  58. Sorkhabi, R.B., Stump, E., Foland, K.A. & Jain, A.K. (1996) Fission‐track and 40Ar/39Ar evidence for episodic denudation of the Gangotri granites in the Garhwal Higher Himalaya, India. Tectonophysics, 260, 187–199.
    [Google Scholar]
  59. Tessier, B. (1993) Upper intertidal rhythmites in the Mont‐Saint‐Michel Bay (NW France): perspectives for paleoreconstruction. Mar. Geol., 110, 355–367.
    [Google Scholar]
  60. Walling, D.E. (1983) The sediment delivery problem. J. Hydrol., 65, 209–237.
    [Google Scholar]
  61. Warrick, J.A., Milliman, J.D., Walling, D.E., Wasson, R.J., Syvitski, J.P.M. & Aalto, R.E. (2014) Earth is (mostly) flat: apportionment of the flux of continental sediment over millennial time scales: COMMENT. Geology, 42, e316.
    [Google Scholar]
  62. Willenbring, J.K. & von Blanckenburg, F. (2010) Long‐term stability of global erosion rates and weathering during late‐Cenozoic cooling. Nature, 465, 211–214.
    [Google Scholar]
  63. Willenbring, J.K., Codilean, A.T. & McElroy, B. (2014) Earth is (mostly) flat: apportionment of the flux of continental sediment over millennial time scales: REPLY. Geology, 42, e317.
    [Google Scholar]
  64. Williams, G.E. (1989) Late Precambrian tidal rhythmites in South Australia and the history of the Earth's rotation. Jour. Geol. Soc. London, 146, 97–111.
    [Google Scholar]
  65. Williams, G.E. (1991) Upper Proterozoic tidal rhythmites, South Australia: sedimentary features, deposition, and implications for the earth's paleorotation. In: Clastic Tidal Sedimentology (Ed. by D.G.Smith , G.E.Reinson , B.A.Zaitlan & R.A.Rahmani ), Can. Soc. Pet. Geol. Memoir, 16, 161–177.
    [Google Scholar]
  66. Zeitler, P.K., Herczeg, A., McDougall, I. & Honda, M. (1987) U‐Th‐He dating of apatite: a potential thermochronometer. Geochim. Cosmochim. Acta, 51, 2865–2868.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12162
Loading
/content/journals/10.1111/bre.12162
Loading

Data & Media loading...

Supplements

Fluvial channel element thickness and cross‐set thickness data.

PDF
  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error