1887
Volume 30, Issue 2
  • E-ISSN: 1365-2117

Abstract

Abstract

This study aims at understanding the origin and nature of syn‐orogenic fluid flow in the Jaca basin from the South Pyrenean fold and thrust‐belt, as recorded in calcite and quartz veins of the Sierras Interiores (Spain) and the turbiditic basin, which cover upper Cretaceous to Late Eocene syntectonic deposits. The fracture network consists of a classical pattern of transverse and longitudinal fractures related to Layer Parallel Shortening (LPS) and folding respectively. Veins filled equally about the third of fractures in the carbonate shelf and turbidites. Carbon and oxygen isotopes of calcite veins mostly indicate precipitation from isotopically buffered water, consistent with high water‐rock interaction. In the Sierras Interiores, petrographical observations and fluid inclusion microthermometry are consistent with two distinct stages of precipitation. The first stage is characterized by relatively low Th and low salinities (155–205 °C and 0.5–3.2 wt% eq. NaCl). The second stage, which was characterized both by the formation of mode‐I joints and by mode‐I reactivation of pre‐existing veins, shows higher Th and salinities (215–270 °C and 2.2–5.7 wt% eq. NaCl). Waters recorded in the second stage are interpreted to have interacted with underlying Triassic evaporites and flowed along major thrusts before vein precipitation, which are locally in thermal disequilibrium with host‐rocks. We suggest the transition from a rather closed hydrological system during the first stage of vein formation, interpreted to have occurred during Eaux‐chaudes thrusting (upper Lutetian‐Bartonian), to a more open hydrological system during the second stage, which likely occurred during Gavarnie thrusting (Priabonian‐early Rupelian). Finally, we also document the migration in space and time of hydrothermal pulses along the South Pyrenean Foreland Basin, related to the westward propagation of major thrusts during the Pyrenean orogeny.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12249
2017-07-07
2024-04-27
Loading full text...

Full text loading...

References

  1. Al‐Aasm, I.S., Lonnee, J. & Clarke, J. (2002) Multiple fluid flow events and the formation of saddle dolomite: case studies from the middle Devonian of the Western Canada sedimentary basin. Mar. Pet. Geol., 19, 209–217.
    [Google Scholar]
  2. Allen, P.A. & Allen, J.R. (2013) Basin Analysis: Principles and Application to Petroleum Play Assessment. John Wiley & Sons, Oxford.
    [Google Scholar]
  3. Amrouch, K., Lacombe, O., Bellahsen, N., Daniel, J.M. & Callot, J.P. (2010a) Stress and strain patterns, kinematics and deformation mechanisms in a basement‐cored anticline: sheep Mountain Anticline, Wyoming. Tectonics, 29, TC1005. https://doi.org/10.1029/2009TC002525.
    [Google Scholar]
  4. Amrouch, K., Robion, P., Callot, J.‐P., Lacombe, O., Daniel, J.‐M., Bellahsen, N. & Faure, J.‐L. (2010b) Constraints on deformation mechanisms during folding provided by rock physical properties: a case study at sheep mountain anticline (Wyoming, USA). Geophys. J. Int., 182, 1105–1123.
    [Google Scholar]
  5. Amrouch, K., Beaudoin, N., Lacombe, O., Bellahsen, N. & Daniel, J.M. (2011) Paleostress magnitudes in folded sedimentary rocks. Geophys. Res. Lett., 38, L17301. https://doi.org/10.1029/2011GL048649.
    [Google Scholar]
  6. Bakker, R.J. (1999) Adaptation of the Bowers and Helgeson (1983) equation of state to the H2o–Co2–Ch4–N2–Nacl system. Chem. Geol., 154, 225–236.
    [Google Scholar]
  7. Barbier, M., Hamon, Y., Callot, J.‐P., Floquet, M. & Daniel, J.‐M. (2012a) Sedimentary and diagenetic controls on the multiscale fracturing pattern of a carbonate reservoir: the Madison formation (Sheep Mountain, Wyoming, USA). Mar. Pet. Geol., 29, 50–67.
    [Google Scholar]
  8. Barbier, M., Leprêtre, R., Callot, J.‐P., Gasparrini, M., Daniel, J.‐M., Hamon, Y., Lacombe, O. & Floquet, M. (2012b) Impact of fracture stratigraphy on the paleo‐hydrogeology of the Madison limestone in two basement‐involved folds in the Bighorn Basin, (Wyoming, USA). Tectonophysics, 576, 116–132.
    [Google Scholar]
  9. Bauluz, B., Yuste, A., Mayayo, M., Rodríguez‐Navarro, A. & González‐López, J. (2012) Microtexture and genesis of clay minerals from a turbiditic sequence in a Southern Pyrenees Foreland Basin (Jaca Basin, Eocene). Clay Miner., 47, 303–318.
    [Google Scholar]
  10. Beaudoin, N., Bellahsen, N., Lacombe, O. & Emmanuel, L. (2011) Fracture‐controlled paleohydrogeology in a basement‐cored, fault‐related fold: sheep Mountain Anticline, Wyoming, United States. Geochem. Geophys. Geosyst., 12, Q06011.
    [Google Scholar]
  11. Beaudoin, N., Bellahsen, N., Lacombe, O., Emmanuel, L. & Pironon, J. (2014a) Crustal‐scale fluid flow during the tectonic evolution of the Bighorn Basin (Wyoming, USA). Basin Res., 26, 403–435.
    [Google Scholar]
  12. Beaudoin, N., Lacombe, O., Bellahsen, N., Amrouch, K. & Daniel, J.‐M. (2014b) Evolution of pore‐fluid pressure during folding and basin contraction in overpressured reservoirs: insights from the Madison–Phosphoria carbonate formations in the Bighorn Basin (Wyoming, USA). Mar. Pet. Geol., 55, 214–229.
    [Google Scholar]
  13. Beaudoin, N., Huyghe, D., Bellahsen, N., Lacombe, O., Emmanuel, L., Mouthereau, F. & Ouanhnon, L. (2015) Fluid systems and fracture development during syn‐depositional fold growth: an example from the Pico Del Aguila Anticline, sierras exteriores, Southern Pyrenees, Spain. J. Struct. Geol., 70, 23–38.
    [Google Scholar]
  14. Beaumont, C., Muñoz, J.A., Hamilton, J. & Fullsack, P. (2000) Factors controlling the Alpine evolution of the central Pyrenees inferred from a comparison of observations and geodynamical models. J. Geophys. Res. Solid Earth, 105, 8121–8145.
    [Google Scholar]
  15. Bellahsen, N., Fiore, P. & Pollard, D.D. (2006) the role of fractures in the structural interpretation of Sheep Mountain Anticline, Wyoming. J. Struct. Geol., 28, 850–867.
    [Google Scholar]
  16. Bergbauer, S. & Pollard, D.D. (2004) A new conceptual fold‐fracture model including prefolding joints, based on the Emigrant Gap Anticline, Wyoming. Geol. Soc. Am. Bull., 116, 294–307.
    [Google Scholar]
  17. Bodnar, R. (1993) Revised equation and table for determining the freezing point depression of H 2 O‐Nacl solutions. Geochim. Cosmochim. Acta, 57, 683–684.
    [Google Scholar]
  18. Bons, P.D., Elburg, M.A. & Gomez‐Rivas, E. (2012) A review of the formation of tectonic veins and their microstructures. J. Struct. Geol., 43, 33–62.
    [Google Scholar]
  19. Bons, P.D., Fusswinkel, T., Gomez‐Rivas, E., Markl, G., Wagner, T. & Walter, B. (2014) Fluid mixing from below in unconformity‐related hydrothermal ore deposits. Geology, 42, 1035–1038.
    [Google Scholar]
  20. Bradbury, H.J. & Woodwell, G.R. (1987) Ancient fluid flow within foreland terrains. Geol. Soc. Spec. Publ., 34, 87–102.
    [Google Scholar]
  21. Branellec, M., Callot, J., Nivière, B. & Ringenbach, J. (2015) The fracture network, a proxy for mesoscale deformation: constraints on layer parallel shortening history from the Malargüe Fold and Thrust Belt, Argentina. Tectonics, 34, 623–647.
    [Google Scholar]
  22. Breesch, L., Swennen, R. & Vincent, B. (2009) Fluid flow reconstruction in hanging and footwall carbonates: compartmentalization by Cenozoic reverse faulting in the Northern Oman Mountains (UAE). Mar. Pet. Geol., 26, 113–128.
    [Google Scholar]
  23. Brown, K.M., Saffer, D.M. & Bekins, B.A. (2001) Smectite diagenesis, pore‐water freshening, and fluid flow at the toe of the nankai wedge. Earth Planet. Sci. Lett., 194, 97–109.
    [Google Scholar]
  24. Bussolotto, M., Benedicto, A., Invernizzi, C., Micarelli, L., Plagnes, V. & Deiana, G. (2007) Deformation features within an active normal fault zone in carbonate rocks: the gubbio fault (Central Apennines, Italy). J. Struct. Geol., 29, 2017–2037.
    [Google Scholar]
  25. Callot, J.‐P., Breesch, L., Guilhaumou, N., Roure, F., Swennen, R. & Vilasi, N. (2010) Paleo‐fluids characterisation and fluid flow modelling along a regional transect in Northern United Arab Emirates (UAE). In: Lithosphere Dynamics and Sedimentary Basins: The Arabian Plate and Analogues (Ed. by K.Al Hosani , F.Roure , R.Ellison & S.Lokier ), pp. 177–201.
  26. Cantarelli, V., Aldega, L., Corrado, S., Invernizzi, C. & Casas‐Sainz, A. (2013) Thermal history of the Aragón‐Béarn Basin (Late Paleozoic, Western Pyrenees, Spain); insights into basin tectonic evolution. Italian J. Geosci., 132, 443–462.
    [Google Scholar]
  27. Carbayo, A., León, L. & Puigdefàbregas, G. (1972) Mapa Geológico De España a Escala 1:50000. Hoja 117 (Ochagavía). IGME, Spain.
  28. Cardozo, N. & Allmendinger, R.W. (2013) Spherical projections with osxstereonet. Comput. Geosci., 51, 193–205.
    [Google Scholar]
  29. Choukroune, P. & Garrido, A. (1989) Les Pyrénées Vues Par Ecors: Une Image Inattendue!. La Recherche, 206, 132–135.
    [Google Scholar]
  30. Cooper, M. (2007) Structural style and hydrocarbon prospectivity in fold and thrust belts: a global review. Geol. Soc. Spec. Publ., 272, 447–472.
    [Google Scholar]
  31. Cruset, D., Cantarero, I., Travé, A., Vergés, J. & John, C.M. (2016) Crestal graben fluid evolution during growth of the Puig‐Reig anticline (South Pyrenean Fold and Thrust Belt). J. Geodyn., 101, 30–50.
    [Google Scholar]
  32. De Rojas, B.J. & Latorre, F. (1972) Mapa Geológico De España a Escala 1:50000. Hoja 175 (Sigüés). IGME, Spain.
  33. Del Valle, J., Puigdefàbregas, C. & Sánchez, I. (1972) Mapa Geológico De España a Escala 1:50000. Hoja 143 (Navascués). IGME, Spain.
  34. Douglas, T., Chamberlain, C., Poage, M., Abruzzese, M., Shultz, S., Henneberry, J. & Layer, P. (2003) Fluid flow and the heart mountain fault: a stable isotopic, fluid inclusion, and geochronologic study. Geofluids, 3, 13–32.
    [Google Scholar]
  35. Engelder, T. & Peacock, D.C. (2001) Joint development normal to regional compression during flexural‐flow folding: the Lilstock Buttress Anticline, Somerset, England. J. Struct. Geol., 23, 259–277.
    [Google Scholar]
  36. Evans, M.A. (2010) Temporal and spatial changes in deformation conditions during the formation of the central Appalachian fold‐and‐thrust belt: evidence from joints, vein mineral paragenesis, and fluid inclusions. Geol. Soc. Am. Mem., 206, 477–552.
    [Google Scholar]
  37. Evans, M.A. & Battles, D.A. (1999) Fluid inclusion and stable isotope analyses of veins from the Central Appalachian valley and ridge province: implications for regional synorogenic hydrologic structure and fluid migration. Geol. Soc. Am. Bull., 111, 1841–1860.
    [Google Scholar]
  38. Evans, M.A. & Fischer, M.P. (2012) On the distribution of fluids in folds: a review of controlling factors and processes. J. Struct. Geol., 44, 2–24.
    [Google Scholar]
  39. Evans, M. & Hobbs, G. (2003) Fate of ‘warm'migrating fluids in the central appalachians during the Late Paleozoic Alleghanian Orogeny. J. Geochem. Explor., 78, 327–331.
    [Google Scholar]
  40. Evans, M.A., Bebout, G.E. & Brown, C.H. (2012) Changing fluid conditions during folding: an example from the Central Appalachians. Tectonophysics, 576, 99–115.
    [Google Scholar]
  41. Ferket, H., Roure, F., Swennen, R. & Ortuno, S. (2000) Fluid migration placed into the deformation history of fold‐and‐thrust belts: an example from the Veracruz Basin (Mexico). J. Geochem. Explor., 69, 275–279.
    [Google Scholar]
  42. Ferket, H., Ortuno, S., Roure, F. & Swennen, R. (2002) Diagenesis and fluid flow history in reservoir carbonates of the cordilleran foreland fold and thrust belt: the Cordoba platform (Eastern Mexico). AAPG Search Dis. Art., #90011©2002 AAPG Hedberg Conference, May 14‐18, 2002, Palermo ‐ Mondello, Sicily, Italy.
    [Google Scholar]
  43. Fischer, M.P., Higuera‐Díaz, I.C., Evans, M.A., Perry, E.C. & Lefticariu, L. (2009) Fracture‐controlled paleohydrology in a map‐scale detachment fold: insights from the analysis of fluid inclusions in calcite and quartz veins. J. Struct. Geol., 31, 1490–1510.
    [Google Scholar]
  44. Fitts, T.G. & Brown, K.M. (1999) Stress‐induced smectite dehydration: ramifications for patterns of freshening and fluid expulsion in the N. Barbados Accretionary Wedge. Earth Planet. Sci. Lett., 172, 179–197.
    [Google Scholar]
  45. Fitz‐Diaz, E., Hudleston, P., Siebenaller, L., Kirschner, D., Camprubí, A., Tolson, G. & Puig, T.P. (2011) Insights into fluid flow and water‐rock interaction during deformation of carbonate sequences in the Mexican Fold‐Thrust Belt. J. Struct. Geol., 33, 1237–1253.
    [Google Scholar]
  46. Fowler, T. (1996) Flexural‐slip generated bedding‐parallel veins from Central Victoria, Australia. J. Struct. Geol., 18, 1399–1415.
    [Google Scholar]
  47. Friedman, I. & O'Neil, J.R. (1977) Compilation of Stable Isotope Fractionation Factors of Geochemical Interest. USGPO.
  48. Fyfe, W. & Kerrich, R. (1985) Fluids and thrusting. Chem. Geol., 49, 353–362.
    [Google Scholar]
  49. Garrido, H.M., Morer, E.P., Cardona, M.A., Aguado, A.L., Urcía, B.O. & Peña, B.M. (2000) Actividad Tectónica Registrada En Los Depósitos Terciarios Del Frente Meridional Del Pirineo Central. Rev. Soc. Geol. Esp., 13, 279–300.
    [Google Scholar]
  50. Goldstein, R.H. (2001) Fluid Inclusions in sedimentary and diagenetic systems. Lithos, 55, 159–193.
    [Google Scholar]
  51. Goldstein, R.H. & Reynolds, T.J. (1994) Systematics of fluid inclusions in diagenetic minerals: sepm short course. Soc. Sediment. Geol., 31, 199.
    [Google Scholar]
  52. Hoareau, G., Odonne, F., Garcia, D., Debroas, E.‐J., Monnin, C., Dubois, M. & Potdevin, J.‐L. (2015) Burial diagenesis of the Eocene Sobrarbe Delta (Ainsa Basin, Spain) inferred from dolomitic concretions. J. Sediment. Res., 85, 1037–1057.
    [Google Scholar]
  53. Husson, L. & Moretti, I. (2002) Thermal regime of fold and thrust belts—an application to the Bolivian Sub Andean Zone. Tectonophysics, 345, 253–280.
    [Google Scholar]
  54. Huyghe, D., Mouthereau, F., Castelltort, S., Filleaudeau, P.Y. & Emmanuel, L. (2009) Paleogene propagation of the Southern Pyrenean thrust wedge revealed by finite strain analysis in frontal thrust sheets: implications for mountain building. Earth Planet. Sci. Lett., 288, 421–433.
    [Google Scholar]
  55. Izquierdo‐Llavall, E., Aldega, L., Cantarelli, V., Corrado, S., Gil‐Peña, I., Invernizzi, C. & Casas, A.M. (2013) On the origin of cleavage in the central Pyrenees: structural and Paleo‐thermal study. Tectonophysics, 608, 303–318.
    [Google Scholar]
  56. Jammes, S., Manatschal, G., Lavier, L. & Masini, E. (2009) Tectonosedimentary evolution related to extreme crustal thinning ahead of a propagating ocean: example of the western Pyrenees. Tectonics, 28, 4.
    [Google Scholar]
  57. Jessell, M., Willman, C. & Gray, D. (1994) Bedding parallel veins and their relationship to folding. J. Struct. Geol., 16, 753–767.
    [Google Scholar]
  58. Jolivet, M., Labaume, P., Monié, P., Brunel, M., Arnaud, N. & Campani, M. (2007) Thermochronology constraints for the propagation sequence of the south pyrenean basement thrust system (France‐Spain). Tectonics, 26, 5.
    [Google Scholar]
  59. Katz, D.A., Eberli, G.P., Swart, P.K. & Smith, L.B.Jr (2006) Tectonic‐hydrothermal brecciation associated with calcite precipitation and permeability destruction in Mississippian carbonate reservoirs, Montana and Wyoming. AAPG Bull., 90, 1803–1841.
    [Google Scholar]
  60. Kim, J.‐H., Torres, M.E., Hong, W.‐L., Choi, J., Riedel, M., Bahk, J.‐J. & Kim, S.‐H. (2013) Pore fluid chemistry from the second gas hydrate drilling expedition in the Ulleung Basin (Ubgh2): source, mechanisms and consequences of fluid freshening in the central part of the Ulleung Basin, East Sea. Mar. Pet. Geol., 47, 99–112.
    [Google Scholar]
  61. Kirkwood, D., Ayt‐Ougougdal, M., Gayot, T., Beaudoin, G. & Pironon, J. (2000) Paleofluid‐Flow in a Foreland Basin, Northern Appalachians: from syntectonic flexural extension to taconian overthrusting. J. Geochem. Explor., 69, 269–273.
    [Google Scholar]
  62. Kirschner, D.L. & Kennedy, L.A. (2001) Limited syntectonic fluid flow in carbonate‐hosted thrust faults of the front ranges, Canadian Rockies, inferred from stable isotope data and structures. J. Geophys. Res. Solid Earth, 106, 8827–8840.
    [Google Scholar]
  63. Labaume, P., Séguret, M. & Seyve, C. (1985) Evolution of a turbiditic foreland basin and analogy with an accretionary prism: example of the Eocene South‐Pyrenean Basin. Tectonics, 4, 661–685.
    [Google Scholar]
  64. Labaume, P., Meresse, F., Jolivet, M., Teixell, A. & Lahfid, A. (2016) Tectonothermal history of an exhumed thrust‐sheet‐top basin: an example from the South Pyrenean Thrust Belt. Tectonics, 35, 1280–1313.
    [Google Scholar]
  65. Lacroix, B., Buatier, M., Labaume, P., Travé, A., Dubois, M., Charpentier, D., Ventalon, S. & Convert‐Gaubier, D. (2011) Microtectonic and geochemical characterization of thrusting in a foreland basin: example of the South‐Pyrenean Orogenic Wedge (Spain). J. Struct. Geol., 33, 1359–1377.
    [Google Scholar]
  66. Lacroix, B., Charpentier, D., Buatier, M., Vennemann, T., Labaume, P., Adatte, T., Travé, A. & Dubois, M. (2012) Formation of chlorite during thrust fault reactivation. Record of fluid origin and P–T Conditions in the Monte Perdido Thrust Fault (Southern Pyrenees). Contrib. Miner. Petrol., 163, 1083–1102.
    [Google Scholar]
  67. Lacroix, B., Travé, A., Buatier, M., Labaume, P., Vennemann, T. & Dubois, M. (2014) Syntectonic fluid‐flow along thrust faults: example of the South‐Pyrenean Fold‐and‐Thrust Belt. Mar. Pet. Geol., 49, 84–98.
    [Google Scholar]
  68. Lagabrielle, Y., Labaume, P. & de Saint Blanquat, M. (2010) Mantle Exhumation, crustal denudation, and gravity tectonics during cretaceous rifting in the pyrenean realm (Sw Europe): insights from the geological setting of the lherzolite bodies. Tectonics, 29, 4.
    [Google Scholar]
  69. Larrasoaña, J.C., Parés, J.M., Millán, H., Del Valle, J. & Pueyo, E.L. (2003) Paleomagnetic, structural, and stratigraphic constraints on transverse fault kinematics during basin inversion: the Pamplona Fault (Pyrenees, North Spain). Tectonics, 22, 1071.
    [Google Scholar]
  70. Lear, C.H., Elderfield, H. & Wilson, P. (2000) Cenozoic deep‐sea temperatures and global ice volumes from Mg/Ca in Benthic Foraminiferal Calcite. Science, 287, 269–272.
    [Google Scholar]
  71. Longstaffe, F. (1987) Stable isotope studies of diagenetic processes. In: Short Course in Stable Isotope Geochemistry of Low Temperature Fluids (Ed. by T.K.Kyser ), vol. 13, pp. 187–257. Mineralogical Association of Canada, Toronto.
    [Google Scholar]
  72. Macgregor, D.S. (1996) Factors controlling the destruction or preservation of giant light oilfields. Petrol. Geosci., 2, 197–217.
    [Google Scholar]
  73. Machel, H., Cavell, P., Buschkuehle, B. & Michael, K. (2000) Tectonically induced fluid flow in Devonian carbonate aquifers of the Western Canada sedimentary basin. J. Geochem. Explor., 69, 213–217.
    [Google Scholar]
  74. Mansurbeg, H., Caja, M.A., Marfil, R., Morad, S., Remacha, E., Garcia, D., Martin‐Crespo, T., El‐Ghali, M.A.K. & Nystuen, J.P. (2009) Diagenetic evolution and porosity destruction of turbiditic hybrid arenites and siliciclastic sandstones of foreland basins: evidence from the Eocene Hecho Group, Pyrenees, Spain. J. Sediment. Res., 79, 711–735.
    [Google Scholar]
  75. McCaig, A.M., Tritlla, J. & Banks, D.A. (2000) Fluid mixing and recycling during pyrenean thrusting: evidence from fluid inclusion halogen ratios. Geochim. Cosmochim. Acta, 64, 3395–3412.
    [Google Scholar]
  76. Millán Garrido, H., Aurell, M. & Meléndez, A. (1994) Synchronous detachment folds and coeval sedimentation in the prepyrenean external Sierras (Spain): a case study for a tectonic origin of sequences and systems tracts. Sedimentology, 41, 1001–1024.
    [Google Scholar]
  77. Millán Garrido, H., Juan, P. & Sainz, C. (1995) El Frente Cabalgamiento Surpirenaico En El Extremo Occidental De Las Sierras Exteriores. Rev. Soc. Geol. España, 8, 73–90.
    [Google Scholar]
  78. Millán Garrido, H.A., Urcia, B.O. & Juan, A.P. (2006) La Transversal De Gavarnie‐Guara. Estructura Y Edad De Los Mantos De Gavarnie, Guara‐Gèdre Y Guarga (Pirineo Centro‐Occidental). Geogaceta, 40, 35–38.
    [Google Scholar]
  79. Montes, M.J. & Barnolas, A. (1992) Mapa Geológico De España a Escala 1:50000. Hoja 210 (Yebra De Basa). IGME, Spain.
  80. Mouthereau, F., Filleaudeau, P.Y., Vacherat, A., Pik, R., Lacombe, O., Fellin, M.G., Castelltort, S., Christophoul, F. & Masini, E. (2014) Placing limits to shortening evolution in the Pyrenees: role of margin architecture and implications for the Iberia/Europe Convergence. Tectonics, 33, 2283–2314.
    [Google Scholar]
  81. Muñoz, J.A., Beamud, E., Fernández, O., Arbués, P., Dinarès‐Turell, J. & Poblet, J. (2013) The ainsa fold and thrust oblique zone of the Central Pyrenees: kinematics of a curved contractional system from paleomagnetic and structural data. Tectonics, 32, 1142–1175.
    [Google Scholar]
  82. Mutti, E., Séguret, M. & Sgavetti, M. (1988) Sedimentation and Deformation in the Tertiary Sequences of the Southern Pyrenees: Field Trip 7. University of Parma, Parma.
    [Google Scholar]
  83. Oliva‐Urcia, B. & Pueyo, E.L. (2007) Rotational basement kinematics deduced from remagnetized cover rocks (Internal Sierras, Southwestern Pyrenees). Tectonics, 26, https://doi.org/10.1029/2006TC001955.
    [Google Scholar]
  84. Passchier, C.W. & Trouw, R.A.J. (2006) Microtectonics. 2nd edn, Springer‐Verlag, Berlin, Germany. 366 pp.
    [Google Scholar]
  85. Pueyo Anchuela, Ó., Pueyo, E.L., Pocoví Juan, A. & Gil Imaz, A. (2012) Vertical axis rotations in fold and thrust belts: comparison of ams and paleomagnetic data in the western external sierras (Southern Pyrenees). Tectonophysics, 532–535, 119–133.
    [Google Scholar]
  86. Puigdefábregas, C. (1975) La Sedimentación Molásica En La Cuenca De Jaca. Inst. Estud. Piren., 104, 1–188.
    [Google Scholar]
  87. Qing, H. & Mountjoy, E. (1992) Large‐scale fluid flow in the middle Devonian Presqu'ile Barrier, Western Canada sedimentary basin. Geology, 20, 903–906.
    [Google Scholar]
  88. Ramsey, J.M. & Chester, F.M. (2004) Hybrid fracture and the transition from extension fracture to shear fracture. Nature, 428, 63–66.
    [Google Scholar]
  89. Ramsey, D.W. & Onasch, C.M. (1999) Fluid migration in a cratonic setting: the fluid histories of two fault zones in the eastern midcontinent. Tectonophysics, 305, 307–323.
    [Google Scholar]
  90. Remacha, E. & Fernández, L.P. (2003) High‐resolution correlation patterns in the turbidite systems of the Hecho Group (South‐Central Pyrenees, Spain). Mar. Pet. Geol., 20, 711–726.
    [Google Scholar]
  91. Ríos Aragüés, L.M., Galera Fernández, J.M. & Barettino Fraile, D. (1987) Mapa Geológico De España a Escala 1:50000. Hoja 146 (Bujaruelo). IGME, Spain.
  92. Roure, F., Choukroune, P., Berastegui, X., Munoz, J., Villien, A., Matheron, P., Bareyt, M., Seguret, M., Camara, P. & Deramond, J. (1989) Ecors deep seismic data and balanced cross sections: geometric constraints on the evolution of the Pyrenees. Tectonics, 8, 41–50.
    [Google Scholar]
  93. Roure, F., Swennen, R., Schneider, F., Faure, J., Ferket, H., Guilhaumou, N., Osadetz, K., Robion, P. & Vandeginste, V. (2005) Incidence and importance of tectonics and natural fluid migration on reservoir evolution in foreland fold‐and‐thrust belts. Oil Gas Sci. Technol., 60, 67–106.
    [Google Scholar]
  94. Rye, D.M. & Bradbury, H.J. (1988) Fluid flow in the crust; an example from a Pyrenean thrust ramp. Am. J. Sci., 288, 197–235.
    [Google Scholar]
  95. Saura, E. & Teixell, A. (2006) Inversion of small basins: effects on structural variations at the leading edge of the axial zone antiformal stack (Southern Pyrenees, Spain). J. Struct. Geol., 28, 1909–1920.
    [Google Scholar]
  96. Schneider, F. (2003) Basin modeling in complex area: examples from Eastern Venezuelan and Canadian Foothills. Oil Gas Sci. Technol., 58, 313–324.
    [Google Scholar]
  97. Sharp, Z. (2009) Application of stable isotope geochemistry to low‐grade metamorphic rocks. In: Low‐Grade Metamorp., pp. 227–260. Blackwell Publishing Ltd., Oxford.
    [Google Scholar]
  98. Sheppard, S.M. (1986) Characterization and isotopic variations in natural waters. Rev. Mineral. Geochem., 16, 165–183.
    [Google Scholar]
  99. Spötl, C. & Vennemann, T.W. (2003) Continuous‐flow isotope ratio mass spectrometric analysis of carbonate minerals. Rapid Commun. Mass Spectrom., 17, 1004–1006.
    [Google Scholar]
  100. Sterner, S.M. & Bodnar, R.J. (1984) Synthetic fluid inclusions in natural quartz I. Compositional types synthesized and applications to experimental geochemistry. Geochim. Cosmochim. Acta, 48, 2659–2668.
    [Google Scholar]
  101. Swennen, R., Muskha, K. & Roure, F. (2000) fluid circulation in the ionian fold and thrust belt (Albania): implications for hydrocarbon prospectivity. J. Geochem. Explor., 69, 629–634.
    [Google Scholar]
  102. Tavani, S., Storti, F., Fernández, O., Muñoz, J.A. & Salvini, F. (2006) 3‐D deformation pattern analysis and evolution of the Añisclo Anticline, Southern Pyrenees. J. Struct. Geol., 28, 695–712.
    [Google Scholar]
  103. Tavani, S., Storti, F., Lacombe, O., Corradetti, A., Muñoz, J. & Mazzoli, S. (2015) A review of deformation pattern templates in foreland basin systems and fold‐and‐thrust belts: implications for the state of stress in the frontal regions of thrust wedges. Earth Sci. Rev., 141, 82–104.
    [Google Scholar]
  104. Teixell, A. (1990) Mapa Geológico De España a Escala 1:50000. Hoja 176 (Jaca). IGME, Spain.
  105. Teixell, A. (1996) The Ansó Transect of the Southern Pyrenees: basement and cover thrust geometries. J. Geol. Soc., 153, 301–310.
    [Google Scholar]
  106. Teixell, A. (1998) Crustal structure and orogenic material budget in the West Central Pyrenees. Tectonics, 17, 395–406.
    [Google Scholar]
  107. Teixell, A., García Sansegundo, J. & Zamorano, M. (1989b) Mapa Geológico De España a Escala 1:50000. Hoja 144 (Ansó). IGME, Spain.
  108. Teixell, A., Montes, M.J., Arenas, C. & Garrido, E.A. (1992) Mapa Geológico De España a Escala 1:50000. Hoja 208 (Uncastillo). IGME, Spain.
  109. Teixell, A., Labaume, P. & Lagabrielle, Y. (2016) The crustal evolution of the West‐Central Pyrenees revisited: inferences from a new kinematic scenario. C.R. Geosci., 348, https://doi.org/10.1016/j.crte.015.10.010.
    [Google Scholar]
  110. Travé, A., Labaume, P., Calvet, F. & Soler, A. (1997) Sediment dewatering and pore fluid migration along thrust faults in a foreland basin inferred from isotopic and elemental geochemical analyses (Eocene Southern Pyrenees, Spain). Tectonophysics, 282, 375–398.
    [Google Scholar]
  111. Travé, A., Labaume, P., Calvet, F., Soler, A., Tritlla, J., Buatier, M., Potdevin, J.‐L., Séguret, M., Raynaud, S. & Briqueu, L. (1998) Fluid migration during eocene thrust emplacement in the South Pyrenean foreland basin (Spain): an integrated structural, mineralogical and geochemical approach. Geol. Soc. Spec. Publ., 134, 163–188.
    [Google Scholar]
  112. Travé, A., Calvet, F., Sans, M., Vergés, J. & Thirlwall, M. (2000) Fluid history related to the alpine compression at the margin of the South‐Pyrenean foreland basin: the El Guix Anticline. Tectonophysics, 321, 73–102.
    [Google Scholar]
  113. Travé, A., Labaume, P. & Vergés, J. (2007) Fluid systems in foreland fold‐and‐thrust belts: an overview from the southern Pyrenees. In: Thrust Belts and Foreland Basins. Frontiers in Earth Sciences (Eds. by O.Lacombe , J.Lavé , F.Roure & J.Vergés ), pp. 93–116. Springer.
    [Google Scholar]
  114. Urcia, B.O., Casas, A., Pueyo, E. & Juan, A.P. (2012) Structural and paleomagnetic evidence for non‐rotational kinematics of the South Pyrenean frontal thrust at the western termination of the external Sierras (Southwestern Central Pyrenees). Geol. Acta, 10, 125–144.
    [Google Scholar]
  115. Vacherat, A., Mouthereau, F., Pik, R., Bernet, M., Gautheron, C., Masini, E., Le Pourhiet, L., Tibari, B. & Lahfid, A. (2014) Thermal imprint of rift‐related processes in orogens as recorded in the Pyrenees. Earth Planet. Sci. Lett., 408, 296–306.
    [Google Scholar]
  116. Van Geet, M., Swennen, R., Durmishi, C., Roure, F. & Muchez, P. (2002) Paragenesis of cretaceous to Eocene carbonates reservoirs in the Ionian fold and thrust belt (Albania): relation between tectonism and fluid flow. Sedimentology, 49, 697–718.
    [Google Scholar]
  117. Vergés, J. & Munoz, J.A. (1990) Thrust sequence in the southern Central Pyrenees. Bull. Soc. Géol. France, 6, 265–271.
    [Google Scholar]
  118. Vergés, J., Marzo, M. & Muñoz, J.A. (2002) Growth strata in foreland settings. Sed. Geol., 146, 1–9.
    [Google Scholar]
  119. Vilasi, N., Malandain, J., Barrier, L., Callot, J.‐P., Amrouch, K., Guilhaumou, N., Lacombe, O., Muska, K., Roure, F. & Swennen, R. (2009) From outcrop and petrographic studies to basin‐scale fluid flow modelling: the use of the Albanian natural laboratory for carbonate reservoir characterisation. Tectonophysics, 474, 367–392.
    [Google Scholar]
  120. Wall, B.R.G., Girbacea, R., Mesonjesi, A. & Aydin, A. (2006) Evolution of fracture and fault‐controlled fluid pathways in carbonates of the Albanides fold‐thrust belt. AAPG Bull., 90, 1227–1249.
    [Google Scholar]
  121. Warren, J.K. (2006) Evaporites: Sediments, Resources and Hydrocarbons. Springer Science & Business Media, Berlin.
    [Google Scholar]
  122. Zachos, J.C., Stott, L.D. & Lohmann, K.C. (1994) Evolution of early Cenozoic marine temperatures. Paleoceanography, 9, 353–387.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12249
Loading
/content/journals/10.1111/bre.12249
Loading

Data & Media loading...

Supplements

Th versus Tm diagrams, showing means and standard deviations for each primary and secondary FIA, analysed in extensional (EV) and SV‐EV veins (crack‐seal and blocky zones). Salinity in wt % eq. NaCl.

IMAGE

Detailed location of fracture sites. Analytical techniques used at each site are also reported (vitrinite reflectance from Izquierdo . (2013) and Labaume . (2016)). Report to Fig. 12 to localized microthermometric analyses (R1; R2; H1‐H3; A1‐A3 and B1‐B6).

WORD

Results of isotopic analyses. n: not determined.

WORD
  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error