1887
Volume 6, Issue 2‐3
  • E-ISSN: 1365-2117

Abstract

Abstract

Two long‐standing discrepancies between observations and predictions from geophysical models for the evolution of intracratonic basins are: (1) thermal indicators, such as organic maturity, document higher basin temperatures than predicted by thermal conduction; and (2) periods of rapid/slow subsidence which deviate from the exponentially decreasing subsidence rate consistent with thermal contraction. A possible explanation for these problems is free thermal convection in the continental crust beneath the basin. Using a finite difference model for coupled fluid flow and heat transport, the Keweenawan rift beneath the Michigan basin is simulated as a plug of fractured igneous rock 10 km thick and 45 km wide. Overlying the igneous body and adjacent impermeable basement rocks in the model is 4 km of Proterozoic and Palaeozoic sediments of intermediate permeability. Model results indicate that during short‐lived (a few million years) periods of free thermal convection in the igneous body, temperature gradients in the overlying sediments can nearly double and rapid heat loss causes additional subsidence at the centre of the basin. Locally, additional tectonic subsidence can be more than 25 m. After fractures are sealed and free thermal convection slows or stops, basin subsidence is anomalously slow as the basement reheats back to conductive equilibrium.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.1994.tb00079.x
2007-11-06
2024-04-26
Loading full text...

Full text loading...

References

  1. Bethke, C. M. & Marshak, S. (1990) Brine migrations across North America — The plate tectonics of groundwater. Ann. Rev. Earth planet. Sci., 18, 287–315.
    [Google Scholar]
  2. Bethke, C. M., Reed, J. D. & Oltz, D. F. (1991) Long‐range petroleum migration in the Illinois basin. Bull. Am. Ass. petrol. Geol., 75, 925–944.
    [Google Scholar]
  3. Brace, W. F. (1984) Permeability of crystalline rocks: new in situ measurements. J. geophys. Res., 89, 4327–4330.
    [Google Scholar]
  4. Brantley, S.L., Evans, B., Hickman, S.H. & Crerar, D. A. (1990) Healing of microcracks in quartz: implications for fluid flow. Geology, 18, 136–139.
    [Google Scholar]
  5. Cathles, L. M. (1977) An analysis of the cooling of intrusions by groundwater convection which includes boiling. Econ. Geol., 72, 804–826.
    [Google Scholar]
  6. Cercone, K. R. (1984) Thermal history of Michigan Basin. Bull. Am. Ass. petrol. Geol., 68, 130–136.
    [Google Scholar]
  7. Cercone, K. R. & Pollack, H. N. (1991) Thermal maturity of the Michigan Basin. In: Early Sedirnentutiun Evolution of the Michgan Basin (Ed. by P. A.Catacosino & P. A.Daniels), Spec. Pup. Geol Soc. Am., 256, 1–11.
    [Google Scholar]
  8. Cloetingh, S., McQueen, H., & Lambeck, K. (1985) On a tectonic mechanism for regional sealevel variation. Earth planet. Sci. Leti., 75, 157–166.
    [Google Scholar]
  9. Combs, J. & Simmons, G. (1973) Terrestrial heat flow determinations in the north central United States. J. geophys. Res., 78, 441–461.
    [Google Scholar]
  10. Crowley, K. D., Ahern, J. L. & Naeser, C. W. (1985) Origin and epeirogenic history of the Williston Basin: evidence from fission‐track analysis of apatite. Geology, 13, 620–623.
    [Google Scholar]
  11. Domenico, P. A. & Schwartz, F. W. (1990) Physical and Chemical Hydrogeology. John Wiley and Sons, New York .
    [Google Scholar]
  12. Deming, D. (1992) Catastrophic release of heat and fluid flow in the continental crust. Geology, 20, 83–86.
    [Google Scholar]
  13. Deming, D. & Nunn, J. A. (1991) Numerical simulations of brine migration by topographically driven recharge. J. geophys. Res., 96, 2485–2499.
    [Google Scholar]
  14. Deming, D., Nunn, J. A. & Evans, D. G. (1990a) Thermal effects of compaction driven groundwater flow from over thrust belts. J. geophys. Res., 95, 6669–6684.
    [Google Scholar]
  15. Deming, D., Nunn, J.A., Jones, S. & Chapman, D. S. (1990b) Some problems in thermal history studies. Applicatins of Thermal Maturity Studies to Energy Exploration, pp. 61–80. Rocky‐ Mtn Section, SEPM.
    [Google Scholar]
  16. Derrro, R. F., Cozzarelli, F. A. & Hodge, D. S. (1983) Mechanism of subsidence of ancient cratonic rift basins. Tectonophysics, 94, 141–168.
    [Google Scholar]
  17. Dutrow, B., Spera, F.J. & Rosenberg, N. (1993) Dynamics of chaotic thermohaline convection in low‐porosity hydrothermal systems. EOS, Trans. Am. geophys. Un., 74, 688.
    [Google Scholar]
  18. Evans, D.G. (1989) Theoretical and numerical models for heat and mass transport and groundwater flow near salt domes. PhD dissertation, Louisiana State University, Baton Rouge .
  19. Evans, D. G. & Nunn, J. A. (1989) Free thermohaline convection in sediments surrounding a salt column. J. geophys. Res., 94, 12, 413–12, 422.
    [Google Scholar]
  20. Evans, D. G., Nunn, J. A. & Hanor, J. S. (1991) Mechanisms driving groundwater flow near salt domes. Geophys. Res. Lett., 18, 927–930.
    [Google Scholar]
  21. Evans, D. G. & Raffensperger, J. P. (1992) On the stream function for variable‐density groundwater flow. Water Resource. Res., 28, 2141–2145.
    [Google Scholar]
  22. Fournier, R. O. (1990) Double‐diffusive convection in geothermal systems: the Salton Sea, California Geothermal System as a likely candidate. Geothermics, 19, 481–496.
    [Google Scholar]
  23. Fowler, C. M. R. & Nesbit, E. G. (1985) The subsidence of the Williston Basin. Can. J. Earth Sci.22, 408–415.
    [Google Scholar]
  24. Fowler, J. H. & Kuenzi, W. D. (1978) Keweenawan turbidites in Michigan (deep borehole red beds): a foundered basin sequence developed during evolution of a protooceanic rift system. J. geophys. Res., 83, 5833–5843.
    [Google Scholar]
  25. Garven, G. & Freeze, R. A. (1984) Theoretical analysis of the role of groundwater flow in the genesis of stratabound ore deposits. Am. J. Sci., 284, 1085–1174.
    [Google Scholar]
  26. Hanor, J. S. (1979) The sedimentary genesis of hydrothermal fluids. In: Geochemistry of Hydrothermal Ore Deposits (Ed. by H. L.Barnes ), pp. 137–168. John Wiley, New York .
    [Google Scholar]
  27. Hanor, J. S. (1987) Kilometre scale thermohaline overturn of pore waters in the Louisiana Gulf Coast. Nature, 327, 501–503.
    [Google Scholar]
  28. Harry, D. L. & Sawyer, D. S. (1992) A dynamic model of extension in the Baltimore Canyon Trough region. Tectonics, 11, 420–436.
    [Google Scholar]
  29. Haxby, W. F., Turcotte, D. L. & Bird, J. M. (1976) Thermal and mechanical evolution of the Michigan basin. Tectonophysics, 36, 57–75.
    [Google Scholar]
  30. Heidlauf, D. T., Hsui, A. T. & Klein, G. DEV. (1986) Tectonic subsidence analysis of the Illinois basin. J. Geol., 94, 779–794.
    [Google Scholar]
  31. Henry, S. G. & Pollack, H. N. (1988) Terrestrial heat flow above the Andean subduction zone in Bolivia and Peru. J. geophys. Res., 93, 15, 153–15, 162.
    [Google Scholar]
  32. Howell, P. D. & van der Pluijm, B. A. (1990) Early history of the Michigan basin: Subsidence and Appalachian tectonics. Geology, 18, 1195–1198.
    [Google Scholar]
  33. Jessop, A. M., Hobart, M. A. & Sclater, J. G. (1976) The world heat flow data collection ‐ 1975. Geothermal Series No. 5. Energy, Mines, and Resources, Ottawa, Canada.
  34. Johnson, J. W. & Norton, D. (1991) Critical phenomena in hydrothermal systems: state, thermodynamic, electrostatic, and transport properties of H2O in the critical region. Am. J. Sci., 291, 541–648.
    [Google Scholar]
  35. Judge, A. S. & Beck, A. E. (1973) Analysis of heat flow data; several holes in sedimentary basins. Can. J. Earth Sci., 10, 1494–1507.
    [Google Scholar]
  36. Karner, G. D. (1986) Effects of lithospheric in‐plane stress on sedimentary basin stratigraphy. Tectonics, 5, 573–588.
    [Google Scholar]
  37. Keen, C. & de Voogd, B. (1988) The continent‐ocean boundary at the rifted margin off eastern Canada: New results from deep seismic reflection studies. Tectonics, 7, 107–124.
    [Google Scholar]
  38. Klein, G. de V. (1991) Origin and evolution of North American cratonic basins. S. Afr. J. Geol., 94, 3–18.
    [Google Scholar]
  39. Larson, K. W., Betake, C. M. & Lee, M. K. (1992) Heat and solute transport and the role of basement during brine migration in the Illinois Basin. EOS, 73, 125.
    [Google Scholar]
  40. Lowell, R. P. (1990) Thermoelasticity and the formation of black smokers. Geophys. Res. Lett., 17, 709–712.
    [Google Scholar]
  41. Lowell, R. P., Cappellen, P. B. & Germanovich, L. N. (1993) Silica precipitation in fractures and the evolution of permeability in hydrothermal upflow zones. Science, 260, 192–194.
    [Google Scholar]
  42. McCallister, R. H., Boctor, N. Z. & Hinze, W. J. (1978) Petrology of the spilitic rocks from the Michigan basin deep drill hole. J. geophys. Res., 83, 5825–5831.
    [Google Scholar]
  43. McKenzie, D. P. (1978) Some remarks on the development of sedimentary basins. Earth planet. Sci. Lett., 40, 25–32.
    [Google Scholar]
  44. Nesbitt, B. E. & Muehlenbachs, K. (1991) Stable isotopic constraints on the nature of the syntectonic fluid regime of the Canadian Cordillera. Geophys. Res. Lett., 18, 963–966.
    [Google Scholar]
  45. Norton, D. & Knight, J. (1977) Transport phenomena in hydrothermal systems: cooling plutons. Am. J. Sci., 277, 937–981.
    [Google Scholar]
  46. Nunn, J. A. (1990) Relaxation of continental lithosphere: an explanation for Late Cretaceous reactivation of the Sabine Uplift of Louisiana‐Texas. Tectonics, 9, 341–359.
    [Google Scholar]
  47. Nunn, J. A. & Aires, J. R. (1988) Gravity anomalies and flexure of the lithosphere at the Middle Amazon Basin. J. geophys. Res., 93, 415–428.
    [Google Scholar]
  48. Nunn, J. A. & Deming, D. (1991) Thermal constraints on basin‐scale flow systems. Geophys. Res. Lett., 18, 967–970.
    [Google Scholar]
  49. Nunn, J. A. & Sassen, R. (1986) The framework of hydrocarbon generation and migration, Gulf of Mexico continental slope. Trans. Gulf Coast Ass. geol. Soc., 36, 257–262.
    [Google Scholar]
  50. Nunn, J. A. & Sleep, N. H. (1984) Thermal contraction and flexure of intracratonal basin: A three‐dimensional study of the Michigan Basin. Geophys. J. R. Astron. Soc., 76, 587–635.
    [Google Scholar]
  51. Nunn, J. A., Sleep, N. H. & Moore, W. E. (1984) Thermal subsidence and generation of hydrocarbons in Michigan Basin. Bull. Am. Ass. petrol. Geol., 68, 296–315.
    [Google Scholar]
  52. Nur, A. & Walder, J. (1990) Time‐dependent hydraulics of the Earth's crust. In: The Role of Fluids in Crustal Processes (Ed. by J. D.Bredehoeft & D. L.Norton ), pp. 111–127. National Academy Press, Washington , DC .
    [Google Scholar]
  53. Oliver, J. E. (1986) Fluids expelled tectonically from orogenic belts: their role in hydrocarbon migration and other geologic phenomena. Geology, 14, 99–102.
    [Google Scholar]
  54. Patankar, S. V. (1980) Numerical Heat Transfer and Fluid Flow. Hemisphere, New York .
    [Google Scholar]
  55. Press, W. H., Flannery, B. P., Teukolsky, S. A. & Vetterling, W. T. (1986) Numerical Recipes. Cambridge University Press, New York .
    [Google Scholar]
  56. Pollack, H. N. & Watts, D. (1976) Thermal profile of the Michigan basin. EOS, Trans. Am. geophys. Un., 57, 595.
    [Google Scholar]
  57. Quinlan, G. M. (1987) Models of subsidence mechanisms in intracratonic basins, and their applicability to North American examples. Mem. Can. Soc. petrol. Geol., 12, 463–481.
    [Google Scholar]
  58. Quinlan, G. M. & Beaumont, C. (1984) Appalachian thrusting, lithospheric flexure and the Paleozoic stratigraphy of the eastern interior of North America. Can. J. Earth Sci., 21, 973–996.
    [Google Scholar]
  59. Schedl, A., McCabe, C., Montanez‐Isabel, P., Fullager, P. D. & Valley, J. W. (1992) Alleghanian regional diagenesis: a response to the migration of modified metamorphic fluids derived from beneath the Blue Ridge‐Piedmont thrust sheet. J. Geol., 100, 339–352.
    [Google Scholar]
  60. Sleep, N. H. (1971) Thermal effects of the formation of Atlantic continental margins by continental break‐up. Geophys. J. R. astr. Soc., 24, 325–350.
    [Google Scholar]
  61. Sleep, N. H., Nunn, J. A. & Chou, L. (1980) Platform basins. Ann. Rev. Earth planet. Sci., 8, 17–34.
    [Google Scholar]
  62. Sloss, L. L. (1988) Tectonic evolution of the craton in Phanerozoic time. In: Sedimentary Cover ‐ North American Craton. The Geology of North America D‐2 (Ed. by L. L.Sloss ), pp. 25–51. Geological Society of America.
    [Google Scholar]
  63. Smith, L. & Chapman, D. S. (1983) On the thermal effccts of ground water flow, 1, Regional scale systems. J. geophys. Res., 88, 593–608.
    [Google Scholar]
  64. Stakes, D. S. (1978) Mineralogy and geochemistry of the Michigan Deep Hole Mctagabbro compared to seawater hydrothermal alteration. J. geophys. Res., 83, 5820–5831.
    [Google Scholar]
  65. Stein, C. A. & Stein, S. (1992) A modcl for the global variations in oceanic depth and heat flow with lithospheric age. Science, 359, 123–129.
    [Google Scholar]
  66. Taylor, H. P. (1990) Oxygen and hydrogen isotope constraints on the deep circulation of surface waters. In: The Role of Fluids in Crustal Processes (Ed. by J. D.Bredehoeft & D. L.Norton ), pp. 72–95. National Academy Press, Washington , UC .
    [Google Scholar]
  67. Tissot, B. P., Pelet, R. & Ungerer, Ph. (1987) Thermal history of sedimentary basins, maturation indices, and kinetics of oil and gas generation. Bull., Am. Ass. petrol. Geol., 71, 1445–1466.
    [Google Scholar]
  68. Travis, B. J., Janecky, D. R. & Rosenberg, N. D. (1991) Three‐dimensional simulation of. hydrothermal circulation at mid‐ocean ridges. Geophys Res. Lett., 18, 1441–1444.
    [Google Scholar]
  69. Turcotte, D. L. & Schubert, G. (1982) Geodynamics. John Wiley & Sons, New York .
    [Google Scholar]
  70. van der Voo, R. & Watts, D. (1978) Paleomagnetic results from igneous and metamorphic rocks from the Michigan basin borehole. J. geophys. Res., 83, 5844–5848.
    [Google Scholar]
  71. Wang, H. F. & Simmons, G. (1978) Microcracks in crystalline rock from 5.3 km depth in the Michigan Basin. J. geophys. Res., 83, 5849–5856.
    [Google Scholar]
  72. Wathler, J. V. (1990) Fluid dynamics during progressive regional metamorphism. In: The Role of Fluids in Crustal Processes, pp. 64–71. National Academy of Press, Washington , DC .
    [Google Scholar]
  73. Watso, D. C. & Klein, G. DEV. (1989) Origin of the Cambrian‐Ordovician sedimentary cycles of Wisconsin using tectonic subsidence analysis. Geology, 17, 879–881.
    [Google Scholar]
  74. Zhu, T. & Brown, L. D. (1986) Consortium for continental reflection profiling Michigan survcys: Reprocessing and results. J. geophys. Res., 91, 11, 477–11,495.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.1994.tb00079.x
Loading
  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error